Ten FAQs about Wireless Home Networks

Wireless networks are increasingly easy to set up, configure, and  connect to. But they are far from foolproof and dead simple. Despite some great efforts by vendors and industry organizations to simplify the wireless buying, installing, and using experience, things can get a bit confusing, even to those in the know.

In this topic, we look at ten issues we hear the most often when friends and family ask us for help with getting started in the wireless LAN world. We talked to our helpful friends at several of the most popular vendors of wireless networking equipment and asked them what they hear (or what their customer service reps, sales partners, and others close to real-life users hear). Here’s what we have put together (we spend the rest of the topic answering these questions, by the way!):

Which standard is right for me?

  • Should I invest in 802.11g or draft 802.11n?
  • I can connect to the Internet by using an Ethernet cable but not by using my wireless local area network (LAN). What am I doing wrong?
  • How do I get my video games to work on my wireless LAN?
  • My videoconferencing application doesn’t work. What do I do?
  • How do I secure my network from hackers?
  • What is firmware, and why might I need to upgrade it?
  • Isn’t Network Address Translation (NAT) the same as a firewall?
  • How can I find out my Internet Protocol (IP) address?
  • If everything stops working, what can I do?

If you don’t see in this list the particular question you’re asking, we recommend that you at least skim through this topic anyway. You never know: You may find your answer lurking where you least expect it, or you may come across a tidbit of information that may come in handy later. And, throughout this topic, we also steer you to where in the topic we further discuss various topics — which may in turn lead you to your answer (or to other tidbits of information that come in handy later). What we’re saying is that reading this topic can only help you. Also check out next topic, where we give you some troubleshooting tips.


We firmly believe in the power of the Web and of using vendor Web sites for all they’re worth. Support is a critical part of this process. When you’re deciding on a particular piece of equipment for your home network, take a look at the support area on the vendor site for that device. Look at the frequently asked questions (FAQs) for the device; you may find some of those hidden gotchas that you wish you had known about before buying the gear.

Which standard is right for me?

As we discuss in next topic (among other places), several standardized version of Wi-Fi wireless network exist: 802.11b, 802.11a, 802.11g, and 802.11n. When you shop for wireless networking equipment, you find that the vast majority of wireless gear on the market is based on the 802.11g standard. That’s a good thing because it makes it easier to choose gear — we absolutely recommend that you choose equipment that’s compatible with (and Wi-Fi certified for) 802.11n. Notice we did not say 802.11g (no, it’s not a typo). 802.11n draft 2 equipment is fully compatible with 802.11g equipment and will fully replace 802.11g within the next year or two.

The bottom line is that 802.11n is not only a safe recommendation but also a good one. Although it’s far from perfect (the state of the art always moves forward), 802.11n provides a combination of range, compatibility, and speed that makes it good enough for most people. You are not going to find more speed or range than 802.11n draft 2 systems offer.

Should I consider buying one of the enhanced 802.11g (Turbo, MIMO, or Pre-N) systems rather than standard 802.11n?

Before the current draft 2 802.11n systems hit the market in 2007, most manufacturers launched Wi-Fi products that were faster (and longer range) than standard 802.11g systems and used proprietary (meaning not standards-based) variations of 802.11g. These systems are often labeled with marketing terms such as Turbo, MIMO, or something similar (every manufacturer uses a different term) that indicates these are 802.11g routers on steroids.

We’ve used a number of these systems, and for the most part they work well, when they are used in a network of the same equipment. In other words, these systems work well in a network in which everything (routers, adapters, and so on) is from that same manufacturer using the same proprietary technology. These systems also work fine with standard 802.11g (or even 802.11b) equipment, but the full range and speed benefits are realized only in a homogeneous network.

Our only problem with these systems comes into play when we look forward. 802.11n systems are now on the marketplace, offering similar or greater speed and range benefits, and these benefits will work with any other 802.11n certified gear, from any manufacturer. So if you choose an 802.11n system instead of one of these proprietary systems, and then buy a new laptop next year (with built-in 802.11n), you’ll be able to get the extra speed and range on that laptop without buying any extra equipment (which may or may not be available at that point).

We think that manufacturers are still selling enhanced 802.11g gear mainly to continue supporting customers who’ve invested in these technologies over the past few years. If you’re building a new network, it makes a lot of sense to invest the small extra amount in an 802.11n system instead of in one of these older systems.

I can connect to the Internet by using an Ethernet cable but not by using my wireless LAN. What am I doing wrong?

You’re almost there. The fact that everything works for one configuration but not for another rules out many problems. As long as your AP and router are the same device (which is most common), you know that the AP can talk to your Internet gateway (whether it’s your cable modem, digital subscriber line [DSL] modem, or dial-up routers, for example). You know that because, when you’re connected via Ethernet, there’s no problem. The problem is then relegated to being between the AP and the client on the PC.

Most of the time, this is a configuration issue dealing with your service set identifier (SSID) and your security configurations with Wi-Fi Protected Access (WPA2) or Wired Equivalent Privacy (WEP). Your SSID denotes your service area ID for your LAN, and your WEP controls your encryption keys for your data packets. Without both, you can’t decode the signals traveling through the air.

Bring up your wireless configuration program, as we discuss in next topic, and verify again that your SSID is set correctly and your WPA2 passphrase or WEP key is correct. Most configuration programs will find all the wireless transmitters in your area. If you don’t see yours, you have set up your AP in stealth mode so it does not broadcast its name. If that’s the case, you can try typing the word any into the SSID to see whether it finds the AP, or you can go back to your AP configuration using a wired connection and copy the SSID from the AP’s configuration screen — keep in mind that SSIDs are case sensitive.

If neither of those issues is the problem, borrow a friend’s laptop with a compatible wireless connection to see whether his or her card can find and sign on to your LAN when empowered with the right SSID and WPA2 or WEP code. If it can, you know that your client card may have gone bad.

If a card (or any electronics, generally speaking) is going to go bad, most have technical problems within the first 30 days.

If your friend’s PC cannot log on, the problem may be with your AP. At this point, we have to say "Check the vendor’s Web site for specific problem-solving ideas and call its tech-support number for further help."

How do I get my video games to Work on my wireless LAN?

This question has an easy answer and a not-so-easy answer. The easy answer is that you can get your Xbox, PlayStation 2, or GameCube onto your wireless LAN by linking the Ethernet port on your gaming device (if necessary, by purchasing a network adapter kit to add an Ethernet port on your system) with a wireless bridge — which gets your gaming gear onto your wireless network in an easy fashion. You just need to be sure to set your bridge to the same SSID and WEP key or WPA passphrase as your LAN.

That’s the easy part, and you should now be able to access the Internet from your box.

The tough part is allowing the Internet to access your gaming system. This requirement applies to certain games, two-way voice systems, and some aspects of multiplayer gaming. You may need to open certain ports in your router to enable those packets bound for your gaming system to get there. This process is called port forwarding (or something like that — vendors love to name things differently among themselves). Port forwarding basically says to the router that it should block all packets from accessing your system except those with certain characteristics that you identify. (These types of data packets can be let through to your gaming server.).

If this process is too complex to pull off with your present router, consider just setting up a demilitarized zone (DMZ) for your gaming application, where your gaming console or PC sits fairly open to the Internet.This setup isn’t a preferred one, however, for security reasons, and we recommend that you try to get port forwarding to work.

Our esteemed tech editor has a great suggestion if you’re having issues with port forwarding: a Web site called www.portforward.com. Check it out!

My videoconferencing application doesn’t Work. What do I do?

In some ways, videoconferencing is its own animal in its own world. Videoconferencing has its own set of standards that it follows; typically has specialized hardware and software; and, until recently, has required special telephone lines to work.

The success of the Internet and its related protocols has opened up videoconferencing to the mass market with IP standards-based Web cameras and other software-based systems becoming popular.

Still, if you have installed a router with the appropriate protection from the Internet bad guys, videoconferencing can be problematic for all the same reasons as in gaming, which we mention in the preceding section. You need to have packets coming into your application just as much as you’re sending packets out to someone else.

Wait a minute. You may be thinking "Data packets come into my machine all the time (like when I download Web pages), so what are you saying?" Well, those packets are requested, and the router in your AP (or your separate router, if that’s how your network is set up) knows that they’re coming and lets them through. Videoconferencing packets are often unrequested, which makes the whole getting-through-the-router thing a bit tougher.

As such, the answer is the same as with gaming. You need to open ports in your router (called port forwarding) or set up your video application in a DMZ.

How do I secure my network from hackers?

Nothing is totally secure from anything. The adage "Where there’s a will, there’s a way" tends to govern most discussions about someone hacking into your LAN. We tend to fall back on this one instead: Unless you have some major, supersecret hidden trove of something on your LAN that many people would simply kill to have access to, the chances of a hacker spending a great deal of time to get on your LAN is minimal.This does not mean you are safe from maliciousness. Even if hackers care nothing for the contents of your computer, they care a lot about using the processing power of that computer for their own ends. Nasty software called viruses, or Trojans, can get to your computer in many ways. These programs give hackers control of your computer unbeknownst to you so they do other more malicious things such as sending more spam e-mail or infecting more machines.

You can secure the following parts of your network by taking the following actions:

Your Internet connection: You should turn on, at minimum, whatever firewall protection your router offers. If you can, choose a router that has stateful packet inspection (SPI). You should also use antivirus software and seriously consider using personal firewall software on your PCs. Using a firewall in both your router and on your PC is defense in depth: After the bad guys get by your router firewall’s Maginot line, you have extra guns to protect your PCs. (For a little historical perspective on defense strategies, read up on Maginot and his fortification.)

Your airwaves: Because wireless LAN signals can travel right through your walls and out the door, you should strongly consider turning on WPA2 (and taking other measures, which we discuss in next topic) to keep the next-door neighbors from snooping on your network.

What is firmware, and why might I need to upgrade it?

Any consumer electronics device is governed by software seated in onboard chip memory storage. When you turn on the device, it checks this memory to find out what to do and loads the software in that area. This software turns the device on and basically tells it how to operate.

This firmware can be updated through a process that’s specific to each manufacturer. Often, you see options in your software configuration program for checking for firmware upgrades.

Some folks advocate never, ever touching your firmware if you don’t need to. Indeed, reprogramming your firmware can upset much of the logical innards of the device you struggled so hard to configure properly in the first place. In fact, you may see advice on a vendor site, such as this statement from the D-Link site: "Do not upgrade firmware unless you are having specific problems." In other words: If it ain’t broke, don’t fix it. Many times, a firmware upgrade can cause you to lose all customized settings you’ve configured on your router. Although not all vendor firmware upgrades reset your settings to their defaults, many do. Also, it’s always best to do a firmware upgrade with a wired connection to the router — if you lose the wireless signal during the upgrade, you could be forced to totally reset your router — the router might even become inoperable. Be careful!

Despite those warnings, we say "Never say never." Most AP and router vendors operate under a process of continuous improvement, by adding new features and fixing bugs regularly. One key way that you can keep current with these standards is by upgrading your firmware. Over time, your wireless network will fall out of sync with the latest bug fixes and improvements, and you will have to upgrade at some point. When you do so, follow all the manufacturer’s warnings.

In next topic, we discuss Wi-Fi Protected Access 2 (WPA-2). Many older APs and network adapters will be able to use WPA-2, but only after their firmware has been upgraded.

Is NAT the same as a firewall?

If you find networking confusing, you’re not alone. (If it were easy, we would have no market for our books!) One area of confusion is Network Address Translation (NAT). No, NAT isn’t the same as a firewall. It’s important to understand the difference to make sure that you set up your network correctly. Firewalls provide a greater level of security than NAT routers and, thanks to dropping hardware costs, are generally available in all routers these days. The quality of the firewall built into your AP is not necessarily related to the price of the AP. We recommend checking the reviews of any hardware you are looking to purchase from sites such as www.cnet.com.

Often, you hear the term firewall used to describe a router’s ability to protect LAN IP addresses from Internet snoopers. But a true firewall goes deeper than that, by using SPI. SPI allows the firewall to look at each IP address and domain requesting access to the network; the administrator can specify certain IP addresses or domain names that are allowed to be let in while blocking any other attempt to access the LAN. (Sometimes you hear this called filtering.)

Firewalls can also add another layer of protection through a Virtual Private Network (VPN). It enables remote access to the private network through the use of secure logins and authentication. Finally, firewalls can help protect your family from unsavory content by enabling you to block content from certain sites.

How can I find out my IP address?

First off, you have two IP addresses: a public IP address and a private IP address. In some instances, you need to know one or the other or both addresses.

Your private IP address is your IP address on your LAN so that your router knows where to send traffic in and among LAN devices. If you have a LAN printer, that device has its own IP address, as does any network device on your LAN.

The address these devices have, however, is rarely the public IP address (the address is the "Internet phone number" of your network), mostly because public IP addresses are becoming scarce. Your Internet gateway has a public IP address for your home. If you want to access from a public location a specific device on your home network, you typically have to enable port forwarding in your router and then add that port number on the end of your public IP address when you try to make a connection. For example, if you had a Web server on your network, you would type the address 68.129.5.29:80 into your browser when you tried to access it remotely — 80 is the port used for HTTP servers.

You can usually find out your wide area network (public IP address) and LAN (private IP address) from within your router configuration software or Web page, such as http://192.168.1.100. You may see a status screen; this common place shows your present IP addresses and other key information about your present Internet connection.

If you have Windows XP, you can find your computer’s private IP address by choosing StartORun. When the Run dialog box pops up, type cmd and then click OK. In the window that opens, type ipconfig at the command prompt and then press Enter. You see your IP address and a few other network parameters.

If you have Windows Vista, you can find your private IP by clicking the Windows icon (where the Start button used to be in Windows XP), choosing Control Panel, and then choosing Network and Sharing Center. In the Network and Sharing Center, you can access your network status, which will give you your IP address. Keep in mind that Vista security is different from Windows XP. You need to have Administrator access to be able to get to the Network and Sharing Center.

This IP address is your internal, or private, IP address, not the public address that people on the Internet use to connect to your network. If you try to give this address to someone (perhaps so that they can connect to your computer to do videoconferencing or to connect to a game server you’re hosting), it doesn’t work. You need the public IP address that you find in the configuration program for your access point or router. A number of Web sites are available to help you determine your external, or public, IP address (for example, whatismyip.com).

If everything stops Working, what can I do?

The long length of time it can take to get help from tech support these days leads a lot of people to read the manual, check out the Web site, and work hard to debug their situation. But what happens if you have tried everything and it’s still a dead connection — and tech support agrees with you?

In these instances, your last resort is to reset the system back to its factory defaults and start over. Typically you reset your router by pressing a small, recessed button on the back or bottom of the router. (Check your router’s manual — you may have to do this step for a particular length of time, or with another step such as unplugging and replugging the power cord on your router.) If you do this, be sure to upgrade your firmware while you’re at it because it resets your variables anyway. Who knows? The more recent firmware update may resolve some issues that could be causing the problems.

Resetting your device is considered a drastic action and should be taken only after you have tried everything else. Make sure that you at least get a tech-support person on the phone to confirm that you have tried everything and that a reset makes sense.

Next post:

Previous post: