Critical Strategies for IS Projects

INTRODUCTION

Despite enormous progress in the methodologies and technologies used in the development and implementation of information systems (IS), the failure to achieve IS success on a consistent basis continues to plague the efforts of many companies (Clegg et al., 1997). The success or failure of an IS has been defined in a variety of ways depending on a number of factors, such as the nature of the system and the perspective of the various stakeholders (i.e., IS developers, users, and management). In general, IS success is often subjectively assessed on the basis of how well the system achieves strategic, informational, and transactional benefits for the organization (Mirani & Lederer, 1998).
In order to increase the likelihood of IS success, a variety of approaches and recommendations have been offered. One of the earliest and most popular proposals for increasing IS success was based on the concept of critical success factors (CSF). This proposal assumes that IS failure can be significantly reduced by identifying a small set of factors that are essential for the achievement of IS success (Rockart, 1979). Use of the CSFs approach may make the IS planning process more efficient by providing managers with a decision aid for determining the key areas that are likely to need the most attention and how scarce resources should be allocated. Identification of CSF may also enhance communication about potential problems that may arise due to differences in the perspectives among various stakeholders. Another potential advantage of the CSF approach is that it facilitates the learning process. That is, the CSF approach increases stakeholders’ understanding of the IS development process and the ultimate objectives of the system and how the overall development process can be evaluated (Pollalis & Frieze,1993).


BACKGROUND

Some researchers have attempted to identify the critical factors based on an examination of which factors are statistically related to IS success. In this approach, user satisfaction is often used as measure of IS success. One of the first examples of a study based on this approach used a discriminant analysis procedure to examine which factors best distinguished between successful and unsuccessful projects (Ginzberg, 1981). The results indicated that organizational commitment, commitment to change, and extent of project definition and planning were the best predictors of user satisfaction.
Perhaps because some researchers are not convinced that user satisfaction provides a sufficient surrogate measure of the overall success and benefits of an IS (see Mirani & Lederer, 1998), many investigators have attempted to identify the CSFs based on the views of IS experts. In these studies, IS experts directly assessed the relative importance of potential success factors (e.g., Burn & Szeto, 2000; Jiang, Klein & Balloun, 1996). In general, the results of studies examining the views of IS experts have demonstrated some agreement with respect to the CSFs, although some differences have been observed among the various studies.
Much of the early research on the CSF approach assumed that once the key factors were identified, the same critical factors might apply to the development of all IS. However, as the nature and types of IS have become increasing diverse over the past two decades, much of the recent research has adapted the CSF approach to identifying the key elements that apply to various types of IS and to new areas of IS applications. For example, studies have attempted to identify the CSFs in areas involving executive information systems (Chen & Lee, 2003; Poon & Wagner, 2001), object-oriented analysis and design (Pei & Cutone, 1995), computer-assisted software engineering (Summer & Ryan, 1994), geographical information systems (Nasirin & Birks, 2003), data warehousing (Mukherjee & D’Souza, 2003), emerging information systems in the public sector (Bajjaly, 1999), implementation of integrated services digital networks (Lai & Clark, 1998), enterprise resource planning systems (Akkermans & van Helden, 2002; Al-Mashari, Al-Mudimigh & Zairi, 2003; Umble, Haft & Umble, 2003), information systems requirements gathering (Havelka & Sooun, 2002), the IT alignment planning process (Peak & Guynes, 2003), strategic planning in Eastern cultures (Ang & Teo, 1997), managing decentralized information technology (Birge, 1997), performance of information centers (Guimaraes, Gupta & Rather, 1999), outsourcing implementation (Kim & Young-Soo, 2003; Soliman, Chen & Frolick, 2003), extranet adoption in e-supply chain (Chow, 2004), and facilitating participation of many people in the IS planning process (Peffers, Gengler & Tunnanen, 2003).
Another perspective for remedying the problem of low IS success rates is to identify the causes of IS failure (Williams & Ramaprasad, 1996). According to this viewpoint, there may be inhibiting factors that play a key role in causing IS failure, and therefore it is important to identify both CSFs and critical failure factors (CFFs). Otherwise, a disproportionate amount of attention may be devoted to enhancing factors only to discover that there are inhibiting factors that prevent IS success.
Several studies have surveyed IS experts in attempts to identify the key factors contributing to unsuccessful or abandoned IS projects (e.g., Jiang, Klein & Balloun, 1998; Lyytinen, 1988). For example, Ewusi-Mensah (1997) examined abandoned IS projects and found that poorly defined project goals, lack of project team experience and expertise, inappropriate technology, lack of top management involvement, and escalating project costs were among the reasons for IS failure.
Many of the factors identified as CFFs are the same factors identified as CSFs. Thus, a CFF may simply be the absence of the CSF. However, there appears to be enough differences in the results of studies on CSFs and CFFs to warrant an investigation on the possibility of both enhancing and inhibiting factors (e.g., Lyytinen, 1987).

PURPOSE OF STUDY

Although numerous studies have investigated potential CSFs or CFFs, apparently there has not been any attempt to examine both types of factors in a single study. One objective of this study was to examine if there are any differences in the relative importance of the factors believed to contribute to the success and failure of IS projects.
Consistent with the notion that CSFs may vary depending on the nature and type of IS, a second goal of this study was to examine potential cultural differences in IS developers’ views on CSF. A limitation of prior research attempting to identify the CSFs and CFFs is that almost all of the research has focused on the views of IS developers in Western cultures. With an increasing number of corporations developing and implementing IS applications that cross national boundaries and span diverse cultures, there is a need to determine if the factors viewed as most important by IS developers in the Western culture are the same factors viewed as most important by IS developers in other cultures. It may be particularly important to investigate the views of IS developers in Eastern Asia. Several countries in Eastern Asia play a significant role in the area of global information technology (McIntosh, 1999). In addition, the vast differences between Western and Eastern cultures have created a number of obstacles to the successful development of global IS when Asian offices are involved (Burnson, 1989). Thus, this study focused on an investigation of the views of IS developers from Korea.
The present study addressed the following two goals.
1. Which factors do IS developers in Korea view as most important for contributing to IS success and to
IS failure?
2. How similar are the views of IS developers in Korea regarding CSFs and CFFs to the results reported in previous studies involving IS developers from Western cultures?

RESEARCH METHODOLOGY

Critical Factors: Based on prior studies examining CSFs and CFFs, this study identified 18 potential factors. These factors are controllable and applicable to IS developers in international environments. The 18 factors are listed in Table 1. The failure factors are expressed as the absence or insufficient condition of the success factors.
Respondents: A systematic random sampling procedure was used to distribute the surveys to IS developer in 10 Korean organizations. The number of IS developers surveyed in each organization ranged from 4 to 29, resulting in a total of 127 useable surveys. Most of the respondents had a least a college degree (83.5%). The average age of the respondents was 32.24 with a standard deviation of 4.42 years. The average number of years of experience in the field was 6.25.

RESULTS AND CONCLUSIONS

The sample means and rank order of importance for the CSFs and CFFs are presented in Table 1. As illustrated in Table 1, user participation, clearly stated objectives, and top management support were viewed as highly critical with regard to both IS success and IS failure. In general, the factors viewed as least important by IS developers from Korea were technical factors and/or tactic-related operational factors (e.g., methodology, prototyping, etc.). Apparently IS developers view organizational factors as more crucial for IS success, possibly because they have less control over these factors compared to technical/ operational factors.

Table 1. Means, ranks, and t-test statistics for CSF’s and CFF’s

Critical Factors CSF Mean Rank CFF
Mean Rank
t-statistic
(Insufficient) User participation 6.07 1 5.89 1 -2.59**
(Lack of) Clearly stated objectives 6.06 2 5.38 4 1.10
(Lack of) Team member commitment 5.95 3 5.02 11 3.08**
(Lack of) Top management support 5.91 4 5.57 3 -0.08
(Lack of) Project Leader’s monitoring/control 5.84 5 5.17 9 0.78
Project leader’s (in)experience 5.80 6 5.63 2 1.58
(Ill)Alignment of project and corporate goals 5.71 7 5.05 10 1.12
Use of (in)appropriate technology 5.69 8 4.98 12 0.56
(Lack of) Detailed project plan 5.65 9 5.19 6 -1.44
(No attempt to) Reengineer business process 5.65 9 5.18 7 -0.88
(Im)Proper project scope 5.54 11 5.20 5 -3.17**
(In)Adequate training for team 5.47 12 5.18 7 0.55
(Lack of) Project leader’s feedback 5.45 13 4.85 13 1.97*
(Lack of) Team members’ self-control 5.41 14 4.67 14 -0.37
Utilizing an (in)effective methodology 5.41 14 4.59 16 0.27
Team member (in)experience 5.36 16 4.65 15 0.62
(Little use of)Utilizing a prototype 5.11 17 4.44 18 -0.07
(Insufficient) Peer review on project progress 5.11 17 4.56 17 -0.05

Generally, the importance ratings for the CSFs were very similar to those for the CFFs. This conclusion is confirmed by the high positive correlation between the means for the CSFs and CFFs (r = .841). Since the success factors were rated higher in importance for success than the failure factors were for contributing to the lack of success (e.g., user participation was 6.07 for success and 5.89 for contributing to failure), the responses from each IS developer were standardized in order to compare the relative importance of the 18 success and failure factors. The last column of Table 1 shows the results of related samples t-tests based on the standardized scores. Only 3 of the 18 factors were significant. The two factors viewed as more likely to contribute to IS failure, user participation and project scope, are factors that are generally outside the control of IS developers. The factor viewed as more likely to contribute to IS success, team member commitment, is generally within the domain of the IS developers.
Briefly, the perceptions of critical factors by IS developers from Korea are generally similar to those observed in studies involving IS developers in Western cultures (Ewusi-Mensah, 1997; Ginzberg, 1981; Jiang et al., 1996; Lyytinen, 1988; Pinto & Prescott, 1990). However, Korean IS developers viewed characteristics of the project leaders (monitoring and experience) as more important than what is generally observed in studies involving IS developers in Western cultures. This may be explained in terms of the high power distance culture of Korea. In a high power distance culture, managers are expected to make most of the decisions and take responsibility for project success. Thus, it might seem reasonable to expect that IS developers in Korea would consider project leaders as more important to IS success.
In summary, factors within the domain of the IS developers appear to be more likely to be viewed as CSFs, while factors outside the domain of IS developers are more likely to be viewed as CFFs. However for the most part, the results of this study demonstrate a strong relationship between perceptions of CSFs and CFFs. The views of developers from Korea were generally consistent with results based on surveys of developers from Western cultures, except that Korean IS developers view project leaders as more crucial.

FUTURE TRENDS

Since the introduction of the concept of CSFs, ISs have become increasing diverse. It seems likely that the most crucial factors could vary depending on a number of characteristics of the IS (operational vs. strategic IS (Burn & Szeto, 2000), cultural differences among the IS developers (Kim & Peterson, 2002), and IS lifecycle stage (Pinto & Prescott, 1990)). Thus the list of potential CSFs identified in past research may best serve as a list of potential risk areas that may be encountered in the development of a specific IS (Schmidt et al., 2001). Future research may examine the best methods that IS developers can use to assess the potential risks of each critical factor and procedures to overcome the risks in the development of a specific type of IS or IS application.

KEY TERMS

Business Process Reengineering: Redesign of business processes with the purpose of a dramatic improvement in business performances and productivity.
Critical Failure Factors: CFFs are the limited number of areas which, without careful monitoring of these areas, may lead to a failure of a system.
Critical Success Factors: CSFs are the limited number of areas in which results, if they are satisfactory, will ensure successful competitive performance for the organization.
Detailed Project Plan: A plan(s) that specifies detailed schedules, milestones, humanpower, and equipment requirements necessary for complementing a project.
Peer Review on Project Progress: A structured walkthrough is a widely used technique to provide a test of a proposed system design and is often implemented as a peer feedback and review process.
Proper Project Scope: The scope of the project defines the boundary of the project or which aspects of the system will be included in the project.
Prototype: A simplified and smaller model system that still demonstrates the essence of the system.

Next post:

Previous post: