Commercialization of Insects and Their Products (Insects)

When people contemplate how insects are marketed as consumer products, images of novelties, gimmick foods, cuddly toys, odd adornments, and cartoon images are invoked, calling forth a range of emotions from repugnance to warmth. But that is just the tip of the iceberg. Insects can be very big business. They and their products are sold for crop pollination, pharmaceuticals, health and agricultural protection, and human, pet, and livestock nutrition, as implements for conducting research, as artists or works of art (Fig. 1), and for a host of other uses. This article focuses on commercialization of insects and their products.
Hollywood art.insect wrangler, Steven Kutcher, uses intrinsic behaviors of insects such as this darkling ground beetle to produce works
FIGURE 1 Hollywood art.insect wrangler, Steven Kutcher, uses intrinsic behaviors of insects such as this darkling ground beetle to produce works


Crop Pollination

Flowering plants are fertilized by several groups of insects, but by far the most common pollinators are bees (Fig. 2 ). The honey bee, Apis mellifera, currently plays the dominant role in pollinating large tracts of agriculture. The domestication of the honey bee for pollinating crops had its beginnings at least 4000 years ago. Since that time, beekeeping has flourished and is now a thriving industry. In the United States alone, nearly 100 crops are pollinated by the labor of domesticated worker honey bees each year. In a multi-billion dollar industry, commercial apiaries lease their beehives to growers. Beekeepers manage the hives, moving the bees from field to field to ensure crop pollination. They buy high-quality queen bees from specialized suppliers,
Honey bepollene collecting
FIGURE 2 Honey bepollene collecting .
who, along with the keepers, purchase bee-tending equipment from other specialized suppliers, and the entire industry is dependent on information contained in specialized topics, journals, and magazines. The commercial interdependency of the honey bee industry, the growers and distributors of the food crops they pollinate, and the consumer is crucial to the functioning of most modern societies. That this interdependent relationship can be crippled by diseases, or parasites (e.g., tracheal and Varroa mites), or a syndrome such as Colony Collapse Disorder, causing the apparently unexplained disappearance of bees from their hives, is cause for deep concern.
A number of crops are more efficiently pollinated by bees of other kinds. Leafcutting, or mason bees (Hymenoptera: Megachilidae) can be up to ten times more efficient than honey bees at pollinating some early spring crops. These “solitary” bees, unlike honey bees, do not live in colonies and are immune to the devastating effects of tracheal and Varroa mites, even though they have their own suite of parasites and diseases. Solitary bees produce no honey or wax and are relatively docile. One species of leafcutting bee, Osmia cornifrons, is widely used in Japan for apple pollination. It was imported to the eastern and Midwestern United States for the same purpose. Another leaf-cutting bee, O. lignaria, a native to parts of the United States, is also widely used for orchard pollination. Other mason bees, bred and sold to alfalfa growers in the western portions of the United States, ensure the production of high-quality alfalfa seed.
Another crop pollinator is the bumble bee, which is less affected by extreme weather than the honey bee and is better adapted to perform under confined greenhouse conditions. By vibrating as they extract nectar and pollen, bumble bees efficiently pollinate flowers and encourage high fruit set under greenhouse conditions. Bumble bees are bred, reared, and packaged for sale to growers for pollinating vegetable crops (particularly tomatoes) grown under greenhouse and plastic tunnel conditions.

Agricultural and Human Protection

One who has never witnessed the devastation of a crop by insect pests would be alarmed by the rapidity with which it can occur. One of the best ways to counter the buildup and devastation caused by insect pests is to unleash on them their own natural enemies. A vibrant industry is built on supplying the natural enemies or “beneficials” needed to
manage pests and pest outbreaks, both for protecting agriculture and for preserving human health. These beneficials can take the form of insect pathogens, predatory insects that eat pests, insects that parasitize pests (parasitoids), insects that destroy weeds, and even insects such as killer bees used to scare away elephants from crops. This industry is increasingly in demand as growers, horticulturists, home gardeners, and vector control organizations alike turn from chemically oriented pest suppression measures to the principles of integrated pest management (IPM) and practices more attuned to organic farming. Many companies are in the business of rearing and supplying beneficial organisms, not just for agriculture and health in their broadest senses, but also for parklands, green corridors, and home gardens. This challenging industry must take into account knowledge of the host ranges and systematics of the pests and the beneficial organisms that attack them, methods to efficiently and inexpensively mass-produce the desired beneficials, ways to maintain genetically viable and aggressive beneficial organisms, procedures to efficiently transport beneficials to targeted release sites, and knowledge to ensure that the habitats of the release sites are conducive to optimal utilization by the beneficials for controlling the pest. This last point is especially critical because the beneficials can simply move from the release site and take up residence elsewhere, providing a neighbor, instead of the grower who purchased them, with pest suppression.
Although the mass rearing and marketing of beneficial insects is an expanding business, the mass irradiation and release of sterile males is of a considerably larger scale. The Mediterranean fruit fly, New World screwworm, tsetse fly, and boll weevil have been successfully controlled through inundative releases of sterile males. The technology of irradiation is so notably complex, the scale of releases so great, and the costs of mass irradiation so high that these services are almost always provided by a governmental agency. The International Atomic Energy Agency (IAEA), the Food and Agriculture Organization of the United Nations (FAO), and the U.S. Department of Agriculture (USDA) have been instrumental in pioneering sterile male irradiation and release. The equipment needed to mass-rear, irradiate, and release sterile males is costly. Industry, its major supplier, is exploiting the need for this technology by developing and marketing specialized products.

Live Insects and Human Therapy

The thought of using live insects to treat human ailments would make most pale, but the results can sometimes outperform drugs and surgery typical of more traditional Western medicines. Honey bees, fly maggots, ants, and Plasmodium-carrying mosquitoes are examples of insects used in human therapy.
The venom of honey bees has been used to ameliorate inflammatory and autoimmune conditions such as multiple sclerosis, arthritis, rheumatism, chronic pain, neurological diseases, asthma, and derma-tological conditions. The venom can be administered by humans or injected via the sting of a bee, although this form of therapy should be undertaken only with qualified supervision because some people go into anaphylactic shock when stung by bees. Bee venom is comprised of numerous proteins and peptides, the most active of which is melittin. Although not a conventional form of treatment in the United States, anecdotal evidence of its efficacy keeps companies marketing bees and bee products for therapeutic purposes.
Maggot debridement therapy uses fly larvae of Phoenicia sericata to cleanse wounds of necrotic tissue without attacking healthy underlying tissues. Maggots have been used to treat abscesses, burns, cellulitis, gangrene, ulcers, osteomyelitis, and mastoiditis. Their use has lessened the need for amputations and has been especially useful where diabetes is a complicating factor. Therapy involving the cleansing effect of these maggots dates to the 16th century. Despite the pioneering work in the early part of the 20th century, the practice of debridement therapy fell to disuse with the advent of antibiotics and new surgical techniques in the mid-1940s. The increase in resistance to antibiotics in the late 1980s elicited a resurgence of interest in debridement therapy and the production and use of “Medical Maggots™” in the United States is regulated by the U.S. Food and Drug Administration. The mechanisms underlying success of this treatment are due to the selective removal of necrotic tissue by the fly larvae, the killing of harmful bacteria, and the promotion of wound healing.
Live ants, particularly Amazonian army ants and carpenter ants of Africa, India, and the Mediterranean region, have been used to close wounds and surgical incisions. The sharp mandibles of the soldiers lock when their jaws are closed, irrevocably fastened in place even if the bodies are severed from their heads. Although these live suturing instruments are unlikely to grace surgical theaters in modern hospitals, they have long been used by native peoples.
Another use of live insects for therapy has fallen to disuse now that better alternatives existed. Before other treatments exist, it was known that the progress of syphilis could be halted when the body temperature was raised above 40°C. Because the effects of syphilis were so devastating, mosquitoes bearing a relatively mild strain of malaria were used to infect such patients. The Plasmodium pathogen caused high fevers that exterminated the syphilis pathogen. Although the patients were then infected with malaria, the cure was deemed worth the consequences.

Living Insects on Parade

There is little doubt that insects fascinate. Perhaps that is why they are so often featured in zoos and living museum displays, sold as pets, used in movies, TV, and on-line videos, and ubiquitously adopted for live entertainment and education.
Why anyone would purchase live immature insects and rear them to adulthood may baffle some, but marketing immatures for that purpose is a thriving industry. Hobbyists in the United Kingdom and around the world order exotic butterfly chrysalids for the sheer joy of observing the spectacularly adorned adults emerge. Ant farms, butterfly houses with living chrysalids, a wide variety of butterfly immatures, exotic live tropical stick insects, praying mantid and cockroach oothecae, pea aphids, Drosophila fruit flies, mealworms, and lady beetles are sold directly by suppliers or by auction. Rearing these insects is both fun and educational. For insect collectors, it offers a way to obtain exotic species.
Insect zoos, petting zoos, live museum displays, and insects in botanical gardens provide sometimes exotic backdrops for educating the curious. Staged cricket and beetle fights are popular pastimes in Japan and elsewhere in Southeast Asia. Entomology departments at universities, museums and entomological societies in a number of countries have sponsored insect expositions (insect expos) that draw school groups and families from considerable distances to view these fascinating creatures firsthand. Cockroach races are regular features at insect expos. The human flea, Pulex irritans, was the center of attraction in American flea circuses, where their antics would attract Depression-era audiences to see a show at more than the cost of a double-feature movie.
Butterflies are a charismatic group of insects that are recognized and appreciated by almost everyone. The butterflies’ spectacular, often iridescent beauty has caught the eye of naturalists and collectors alike. In Victorian times, Lord Rothschild employed more than 400 explorers to seek out and collect butterflies for what became the largest personal butterfly collection in the world. Although rearing, buying, and trading butterflies has been a popular pastime in Europe since the days of Queen Victoria, one of the first butterfly houses was inaugurated only relatively recently, in 1977, to attract tourists to Britain’s island of Guernsey, whose poor weather left little to recommend it. After Guernsey’s commercial tomato industry failed and the plastic growing houses were abandoned, someone thought to plant tropical gardens in those plastic houses and populate them with exotic butterflies. The idea was a success and was copied elsewhere well into the 1980s. In 1977, exotic butterfly suppliers were unknown, but the industry has since become a global enterprise.
Who can resist the calming effects of sounds emanating from nature? Many stores play nature sounds as a means of enticing customers to come in and shop. Individuals may use such recordings to bring a calming quality into their lives. Among the insect sounds recorded and marketed are those of cicadas, katydids, grasshoppers, and a variety of crickets singing; June beetles flying; honey bees, bumble bees, yellowjackets, and midges swarming; and medleys of insects communicating or otherwise sounding off in nature. These recordings are sometimes played at insect expos to help bring a sense of reality to those who come to imbibe the amazing presence of the insect world.
The entertainment industry takes advantage of fascinating, educational, scary, and exciting properties of insects by featuring them in movies and on television. Insects are topics of education and wonder on various television series. Like early films with insect subjects, children’s movies rarely film living insects; instead they use graphical characterizations and cartoon images. Fictional films made for more mature audiences, however, usually present the perceived frightening or horrifying aspects of insects, and for this purpose, people are hired as “insect wranglers” to supply and manage live insects on the set. Such management demands a basic understanding of insect behavior, including knowing how to influence the insects to “act” in the way desired by the film director. Discovering that dead insects were easier to manipulate than live ones, Wladislaw Starewicz wired dead specimens and manipulated them frame by frame to simulate desired actions in his early short, The Fight of the Stag Beetles. The critically acclaimed and box office success of the 1996 documentary, Microcosmos, of a year in the lives of insects in a French meadow continues to enthrall viewers.

Waging War with Insects

Insect-borne diseases have taken the lives of countless soldiers throughout the ages. Millions have fallen to malaria, yellow fever, dengue, and a host of other diseases transmitted by mosquitoes. The purposeful waging of war with living insects dates to at least the 14th century when the Tarter army catapulted bodies of bubonic plague victims into Kaffa and relied on fleas to spread the dreaded disease within the city walls. Although knowledge that fleas spread this dread disease would not come until much later, the tactic nonetheless served its purpose.
Using insects to destroy agricultural crops seems to have emerged as a weapon of war only in modern times. Harlequin bugs, Murgantia histrionica, were introduced into the South, presumably in an effort to destroy the crops of the Confederacy during the American Civil War. During World War II, the Japanese undertook the first large-scale use of insects as weapons of war by mass-producing an astonishing 500 million fleas bearing plague bacilli per year! In 1950, during the Cold War, the United States was accused of dropping Colorado potato beetles over East Germany. The Korean War brought to the Far East theater some 14 additional insects purportedly propagated in the United States as agricultural and medical warfare agents. The Vietnam War introduced additional entomological agents of war, especially as vectors of anticrop agents like plant viruses (e.g., beet curly top and Fiji disease), and bacteria (e.g., fire blight, corn wilt).
It was not until 1972 that insects were explicitly banned as weapons of mass destruction by the Biological Weapons Convention. Even though the mass production of these biological weapons was carried out exclusively by governmental agencies acting in secret, the trickle-down effects on local economies of those producing entomological “weapons” must have been notable.
Entomological warfare is not restricted to governments squaring off against each other. In 1990, another relatively large-scale war was waged, this time on the illicit drug trade. In fact, the U.S. government allocated $6.5 million to investigate, breed, and air-drop lepidopterous caterpillars to devour fields planted to coca in tropical Peru.

Insect Identification Services

There are so many insects in this world that most are difficult to identify. Only by having authoritative determinations can many of the various insect-oriented industries succeed. Because of this demand, identification services have sprung up around the world. Some are geared toward the identification of agriculturally or medically related insects, but many focus on identifying insects in the context of biodiversity, especially of benthic invertebrates.



Insect products and by-products probably account for the lion’s share of insect commercialization.

Implements for Research

Insects provide critical basic tools for studying a great many aspects of biology. Because Drosophila melanogaster, a common fruit fly, is small, has a short life cycle, and is inexpensive and easy to rear, it is an extremely valuable organism for biological research, particularly in the fields of genetics and developmental biology. Drosophila has been used extensively and intensively as a model organism for research for almost a century, primarily to uncover the relatedness of genes and their derived proteins and to study and map the underlying mechanisms of genetic inheritance and gene expression. More recently, the field of developmental biology, especially embryology, has relied on Drosophila in explorations of how a complex organism arises from a relatively simple fertilized egg. The genome of Drosophila, one of the first organisms to be sequenced, maps the gene structure of that seminal organismal model. Gene products such as Drosophila polypeptides and transcripts, and investigative tools such as the Drosophila activity monitor for circadian rhythm research, provide highly marketable products for the scientific supply industry. Moreover, specific, even mutant strains of Drosophila may be purchased, as well as supplies for rearing and maintaining cultures, and specialized equipment for conducting experiments. Insect products are also marketed for other research functions. For instance, they are used for genetic and molecular markers. The enzyme luciferase, derived from fireflies, is an excellent marker for assaying gene expression. These markers are produced and sold commercially. Indeed, specialized equipment for detecting the expressed bioluminescence is also marketed. Cell lines derived from insects are another powerful research tool. For example, protein-based human and veterinary vaccines and therapeutic proteins are produced by using baculovirus expression vector systems in insect cell lines. Human and animal protein products derived from insect cell lines are marketed for a number of purposes, including drug screening and clinical trials.

Food Products

Insects are an extremely rich source of high-quality proteins, fats, essential vitamins, and minerals. It is therefore not surprising that dead insects and products derived from them are marketed for their nutritional value. These products can take the form of human food, pet food, and livestock feed.
One can hardly think of insects as a source of human food without envisioning honey, diligently produced by worker bees. Honey was used as a sweetener in ancient Egypt and continues to be popular today, both in cooking and for sweetening foods. Entire industries are built around honey bees both as crop pollinators and as master producers of honey. The latter industry ends with the sale of honey products on the supermarket shelf, but the intermediaries are varied and include, beyond those involved in rearing honey bees, equipment for extracting honey from combs, devices for straining and clarifying honey, and beekeeping topics and magazines that keep the honey producer up to date on the latest developments in the industry.
One often thinks of insects as human food in a novelty context, like being dared to eat fried mealworms, crickets, or chocolate-covered ants at the county fair. But insects have been a serious source of human nutrition for a very long time. This association substantially waned as urbanization and “westernization” spread, but in parts of the globe it continues unabated (Fig. 3 ). Accordingly, about 500 species in some 260 genera and 70 families of insects are used for human food somewhere in the world, especially in central and southern Africa, Asia, Australia, and Latin America. Even in the West, insect foods need not be a novelty. Where they are consumed, insects provide 5-10% of the annual animal protein of indigenous peoples. Mopane worms (larval form of a saturniid moth, Gonimbrasia belina) are so popular in the diets of some in southern Africa that populations are in danger of collapse. The food conversion efficiency is many times
Thai market selling deep-fried insects (anticlockwise left, front): locusts, bamboo-worms, moth chrysalis, crickets, scorpions, and diving beetles.
FIGURE 3 Thai market selling deep-fried insects (anticlockwise left, front): locusts, bamboo-worms, moth chrysalis, crickets, scorpions, and diving beetles.
greater for insects than vertebrate meats. In Thailand, the specialized sex pheromone gland from giant water bugs provides a flavoring to shrimp paste. Thus, marketing insect-derived foodstuffs in selected regions of the globe contributes to local economies, but repugnancy of insect foods in western cultures continues to thwart economic opportunity for mass-producing and marketing these products in the West.


Birds, lizards, fish, caiman, crocodiles, turtles, and a host of other insectivorous pets survive and breed much better if supplied with protein and nutrients that are available from live or dead insects. Rearing and selling these insects to the public is a thriving business. Madagascar hissing roaches are sold as reptile food, whereas crickets and mealworms are marketed for consumption by a variety of pets.
Beyond pet food, insects can provide a highly nutritious food source for domestic animals and livestock. Although low in such amino acids as methionine and cysteine, insects are high in lysine and threo-nine and when supplemented by the former, insect protein forms an excellent feed. Under clinical trials, white rats (the universal experimental animal for testing new medical and pharmaceutical findings) fed Mormon cricket meal demonstrated the great potential of insects as a major source of protein for rats. The free-range or pasture-fed movement recognizes the potential nutritive value of insects as feed for fish, poultry, pig, and farm-grown mink. In China, experiments have demonstrated that insect-derived diets are cost-effective alternatives to more conventional fish-meal diets. House fly larvae and pupae, silkworm pupae, and mealworm larvae are the major sources of these insect-based diets. Fly larvae, which break down manure and animal carcasses, are used to supplement the feed of poultry and other livestock. This system takes recycling to a new level.

Secretions and Dyes

A number of insects have the ability to secrete substances such as waxes and resins through specialized glands. Dyes, too, can be extracted from insect tissues. Many of these products are of high commercial value.


Among fine fabrics made of natural products such as wool, cotton, linen, and leather, silk is almost always the most highly prized. Silk cloth is woven from a secretion of the silkworm, Bombyx mori. In the Orient, sericulture, a 4700-year-old industry, is founded on this insect and its precious secretion. The silk is a continuous-filament fiber consisting of fibroin protein, secreted from two larval salivary glands in the insect’s head, and a gum called sericin, which cements the two filaments together. Silkworm larvae secrete this substance to weave cocoons within which they pupate (Fig. 4) . To obtain the fibroin protein filaments, cocoons are softened in hot water to remove the sericin. Single filaments are drawn from cocoons in water bowls and combined to form yarn, which is drawn under tension and wound onto reels, dried, packed according to quality, and sold as raw silk. It was once believed that silk-like synthetic fibers would replace silk, thus decimating the silk industry, but that has not occurred. Together, China and Japan manufacture more than half of the world production. Other countries, like Nepal, are intensifying their silk production. The sericulture industry is complex, and many suppliers commercially produce and sell products to culture silkworms, obtain the raw silk, refine the silk, weave it, produce clothing from it, and sell the products on the market. Wild sericulture also exists: that is, fibers from cocoons other than the silkworm are used, often by native peoples, in a similar manner. This industry is less relevant to the modern world of
Cocoons from a silk production factory in Wuhan, China.
FIGURE 4 Cocoons from a silk production factory in Wuhan, China.
commerce, but it fuels local industry and provides clothing and other needs of native peoples.


Spider silk, like that of silkworms, is composed of fibroin. However, unlike silkworms, which secrete silk from salivary glands in the head, spiders secrete silk from glands at the tip of the abdomen. Depending on the type of silk that is to be made, the spider mixes the fluid from up to six different glands and regulates the speed and volume of release. Spider silk is an extraordinarily strong and elastic material. On a weight basis, it is stronger than steel; a pencil-thick strand of silk is strong enough to snare a Boeing 747 airplane in midair. However, large-scale commercial production of spider silk will never be from the spiders themselves because they are fiercely cannabalistic when placed together, making them difficult to culture. Biotechnology has provided tools for producing the silk protein in the milk of transgenic goats, but spinning the silk productively into fiber remains commercially elusive.


Royal jelly, a substance secreted by the hypopharyngeal glands of worker honey bees, stimulates the growth and development of queen honey bees. It is highly perishable and one of the most difficult of all foods to harvest, commanding astronomical prices because of its scarcity and high demand, fueled by belief in its healing properties. What royal jelly can do for humans is controversial, but it purportedly reinvigorates the body and extends the life span. Pantothenic acid, a major ingredient, is useful in treating some bone and joint disorders. Rheumatoid arthritis symptoms may subside with the injection of this acid. When pantothenic acid is combined with royal jelly, even better results are reported. This product is sold by many health food companies.


Glands on the underside of young worker honey bee abdomens secrete small wax platelets, which are masticated and molded into a comb of hexagonal cells that may be used to rear larvae (brood) or are filled with honey and capped with additional wax for storage. Of all the primary products of the honey bee, wax has been, and remains, the most versatile and widely used material.
For centuries, beeswax has been regarded as the best material for making candles. An excellent wax for polishing woods and floors, it is also an ingredient in general-purpose varnishes, and is used in packaging, processing, and preserving foods, as a separation agent in the confectionery industry, and in cigarette filters. Textiles and papers have been waterproofed with products containing beeswax. Emulsions containing beeswax clean and soften leather goods.
Batik, an Asian method of coloring cloth, is based on the principle that wax (traditionally beeswax) protects areas that are not to be stained when the cloth is immersed in the dye solution. This protection feature is used for waterproofing and as an anticorrosion rust inhibitor to prevent dissolution of the metal in steel drums used to store and ship honey. Materials for embedding or electrically insulating circuits of high and ultrahigh frequency have included beeswax. Beeswax is used as a binder when lubricant characteristics are desired or if mixtures are to be ingested. It is an ingredient in slow-release pellets of pyrethrum pesticides. Glass can be etched with hydrofluoric acid when areas that are not to be etched have been protected with beeswax. Various inks, pens, markers, and even carbon paper often contain small amounts of beeswax. Ancient jewelers and artisans formed delicate objects from wax and cast them later in precious metals. Colors of 2000-year-old wall paintings, as well as wrappings of Egyptian mummies, contain beeswax. Beeswax has long found use in medicines and body lotions. As a coating for pills, beeswax facilitates ingestion. Other products in which beeswax is a traditional ingredient are grafting wax, crayons, sealing wax, protective car polishes, and thread for sewing canvas sails and leather shoes.


Shellac has been in use for 3200 years and is made from an insect native to India and Myanmar, the lac scale, Kerria lacca lacca. Lac females infest branches of fig trees and cover their bodies with a resinous secretion that hardens into a shield. Between 17,000 and 90,000 insects are needed to produce a pound of lac. The resins are ground to free the lac granules, which are then crushed and boiled in water. The floating lac is skimmed off, dried, and placed in burlap bags, which are stretched over a fire. As it is heated, the bags are twisted and the melted lac drips out. Before hardening, the lac is stretched like toffee. After hardening, the lac is broken into pieces and sold. Lac has been used as the basic ingredient of a vast list of products besides shellac, including stiffening agents in the toes and soles of shoes and felt hats, shoe polishes, artificial fruits, lithographic ink, glazes in confections, 78 rpm phonographic records, playing card finishes, and hair dyes.


Iron gall ink is arguably the most important ink in the history of the Western civilization. It is made of vitriol, gum, water, and, most notably, tannin extracted from Aleppo galls. Oaks produce Aleppo galls in response to a chemical substance secreted by cynipid wasp larvae. The gall provides both food and protection for the larva. Tannin content of the gall is highest before the wasp exits. Because iron gall ink is indelible, it was the ink of choice for documentation on vellum from the late Middle Ages to the middle of the 20th century. It was used for most manuscripts, music scores, drawings, letters, maps, and official documents such as wills, topickeeping records, logs, and real-estate transactions. It was very popular with artists as a drawing ink, used with quill, reed pen, or brush, but does not bond well with celluose-based papers.


Historically, adult female Mediterranean scales (Kermes iticies and K. vermilioi , Oriental lac insects (Kerria lacca), Polish scales (Porphyrophora polonica), and New World cochineal scales (Dactylopius coccus) were used in the preparation of red dyes by a number of indigenous populations. Today, cochineal dye is primarily obtained from an extract of the bodies of scale females found feeding on an Opuntia cactus native to Mexico, and the Americas. The insects’ bodies contain the pigment called carminic acid, which is effective in repelling potential predators. The pigment is extracted by crushing and heating the scale bodies, and commercial production is 4 to 5 times more expensive than synthetic dyes. Although it is still widely used to color many foods, beverages, and pharmaceuticals orange or red, only recently have religious practices and rare allergies encouraged more precise labeling of its presence. It is also used as a natural dye in cosmetics, artisan crafts, and textiles.


Even 3600 years ago, insects, their parts, and toxins derived from them were used to alleviate a number of human ills. Some of the remedies were less than effective (e.g., notably hirsute flies and bees used to treat baldness). Other insect-derived remedies were more credible because they have at their core a chemical property that today confirms their efficacy. For example, the hemolymph of cicadas has a high sodium ion concentration and was recommended in preparations to treat bladder and kidney dysfunction. Hemolymph is known to possess antibacterial properties and has thus been recommended in prescriptions to treat bacterial infections and sepsis. Traditional Chinese medicine includes a wealth of insects and other arthropods in its pharmacopoeia. Dried cockroaches, blister beetles, maggots, silkworm larvae, cicada exuviae, cicada nymphs and adults, and recipes using mole crickets, mantid oothecae, and silkworm frass can be purchased at traditional Chinese drugstores.
Aside from bee venom therapy described earlier, products from honey bees have long been used to promote health and as a food source. Honey, royal jelly, bee pollen, and propolis are all sold to treat a variety of ailments from anorexia to insomnia to cardiovascular diseases, and to promote wound healing.
Blister beetles (family Meloidae) are the major source of can-tharidin, the active ingredient of “Spanish fly.” Male blister beetles give cantharidin to their mates during copulation, and the females cover their eggs with the substance as protection against predators. This chemical has been used to topically treat warts and small infections of Molluscum contagiosum, and was ingested for its aphrodisiac properties; however, acute renal failure and death can arise from overdosing on cantharidin. Chinese researchers have discovered that certain species of blister beetles, long used in traditional medicines, contain antitumor properties. Researchers are attempting to balance the potential cancer-fighting properties with undesirable sideeffects.

Adornments and Displays

Certain insects lend themselves or their products to the making of spectacular jewelry. Beetles are probably the most notable because of their durable, often iridescent, hardened forewings, called elytra, and interesting body shapes. They can be made into brooches (Fig. 5) or encased in plastic for key chains and paperweights; many tropical species are reared specifically for this purpose. Beetle elytra have also been woven into textiles. Insect galls and morpho butterfly and dragonfly wings have been incorporated into jewelry designs. Caddisfly larvae glue together tiny stones, grains of sand, and bits of litter to form cases that camouflage and protect them from their natural enemies. Furnished specific materials such as gold nuggets, shells, or semiprecious stones, they will incorporate these into their protective cases, which can then be harvested and made into earrings, necklaces, tie tacks, and pins. Insects trapped and fossilized in amber also are sold for jewelry and displays. Although butterflies and beetles are commonly encountered in displays, a wide variety of insects are sold for those purposes, for decoration, and for educational uses.
Live death-watch beetles adorned as living jewelry in market in Mexico.
FIGURE 5 Live death-watch beetles adorned as living jewelry in market in Mexico.

Party Favors and Pranks

For the prankster, live Madagascar hissing cockroaches are sold as party favors and “stocking stuffers” for the holidays. Honey bees embedded in plastic cubes shaped like ice, once purchased, can be placed in a guest’s drink. Mexican jumping beans, which are bean seeds containing larvae of a small tortricid moth Cydia deshaisiana, have been popular as novelties for decades.


A more nebulous category of insect commercialization surrounds the marketing of insects in the wild. Bioprospecting, ecotourism, and conservation enhancement are modes through which insects are marketed in an environmental context. These modes frequently interact to serve the broader intent of environmental awareness and protection.

Biodiversity Prospecting

Biodiversity prospecting involves the exploration, extraction, and screening of commercially valuable genetic and biochemically active compounds of plants, arthropods, and microorganisms for pharmaceutical development and agricultural and industrial use. Pharmaceutical corporations and biotechnology companies stalk the wilds in search of biological riches. The vast array of insect compounds that are being discovered, reexamined, and put to new uses in disease treatments lags behind that of the botanicals currently being exploited. In combination with the tendency of many insects to sequester or alter plant compounds they have ingested, there is an enormous untapped source of potential insect or insect-derived compounds for medicine in the insect diversity of this planet.
With advances in molecular biology and the availability of more sophisticated diagnostic screening tools, it is increasingly more cost-effective for commercial organizations in search of new pharmaceuticals to seek out natural products. Because of the difficulty many governments have encountered in maintaining sovereignty and control over their resources, many are promoting legislation to govern access to resources and to ensure that host countries benefit from the commercial products fashioned from their native species.


Tourism is the leading economic sector in several tropical countries. It is dependent on the lure of a warm climate, relatively low prices, and perceptions of relaxation, excitement, and even educational appeal. Ecotourism takes advantage of the attractiveness of adventure by offering the enticement and wonder of nature in an exotic setting. Insects are part of nature’s appeal. Perhaps the best example of insects and ecotourism involves the monarch butterfly, a popular insect in North America. A tropical species, it extends its range northward well into Canada during the growing season but cannot overwinter there. Individuals retreat southward for thousands of kilometers each autumn to take up residence in climes more amenable to their survival. These butterflies are attractive to ecotourism enterprises precisely because of this pattern of movement accompanying the remarkable biology of the insects. Almost anyone can view these beautiful butterflies flitting around meadows and park-lands during the summer months. But as autumn approaches, they begin remarkable journeys southward and westward towards one of two destinations, depending on where they grew up. Those east of the Rocky Mountains migrate to the high-altitude oyamel fir forests of Michoacan, in central Mexico, where they overwinter in extraordinary aggregations of millions of individuals. Those born west of North America’s Continental Divide migrate southwestward and take up residency in the Monterey pines, cypresses, and introduced eucalyptus trees on the Monterey Peninsula of California, where they too overwinter in large aggregations. Entire tourist industries surrounding the protected areas of each locality are based on this amazing insect and its habitat. Accommodations, guided tours, and, in California, considerable emphasis on fine dining are featured.

Conservation Pursuits

Conservation efforts fold together the concepts of ecotourism and bioprospecting in an effort to protect the landscape and its biodiversity. One intent of ecotourism is to sustain the environments that attract the tourists, permitting the business to remain viable. The indigenous Ejido community of central Mexico, for example, depended on income from logging in the buffer zone of the Sierra Chincua sanctuary, the largest and most pristine monarch butterfly overwintering area in the world. Through a leasing contract, the community agreed to cease logging sanctuary forests in exchange for compensation of lost income from ecotourism profits. When agreements are made with the care of the earth as a goal, bioprospecting can also be an instrument for conservation.
Although not big business, conservation efforts can involve the production and sale of insects. Indigenous populations that use natural areas will maintain them if profitable industries, based on gathering and selling renewable resources of the system, can be developed. Jewelry made from beetle elytra and sold at local tourist markets is an example. Insects are sometimes bred and released into the wild to enhance the preservation of the species. A butterfly breeding industry has emerged in many corners of the world where pupae are sold to collectors and accumulated for release into habitats where the species is, for one reason or another, becoming rare. In Papua New Guinea, participants in a butterfly farming project sell live and preserved bird-wing butterflies to collectors around the world. They can earn 50-100 times the average per-capita income. Residents who gain from this industry have a stake in protecting the local environment where wild butterfly stocks originate. Conservation groups encourage the sale of reared butterflies because that reduces the pressure on threatened and endangered species in the wild. Furthermore, by releasing a portion of the reared specimens back into the wild, the industry encourages ecotourism, which, in turn, brings added wealth to the community. A butterfly ranching project in Barra del Colorado in northeastern Costa Rica, is an example. It provides sustainable income for its participants and assigns a portion of the stock bred from wild and captive butterflies for release back into the wild.

Next post:

Previous post: