Auchenorrhyncha (Cicadas, Spittlebugs, Leafhoppers, Treehoppers, and Planthoppers) (Insects)

The hemipteran suborder Auchenorrhyncha is the group of sapsucking insects comprising the modern superfamilies, Cercopoidea (spittlebugs, Fig. 1 ), Cicadoidea (cicadas, Fig. 2 ), Membracoidea (leafhoppers and treehoppers, Fig. 3), and Fulgoroidea
Cercopoidea: spittlebugs and froghoppers: (A) Tomaspis sp. (Cercopidae), Mexico, (B) Machaerota sp. (Machaerotidae), Vietnam, (C) Paraphilaenus parallelus (Aphrophoridae), Kyrgyzstan, (D) Clastoptera obtusa (Clastopteridae), Illinois, U.S.A., (E) spittle mass of P. spumarius nymph, Illinois, U.S.A.
FIGURE 1 Cercopoidea: spittlebugs and froghoppers: (A) Tomaspis sp. (Cercopidae), Mexico, (B) Machaerota sp. (Machaerotidae), Vietnam, (C) Paraphilaenus parallelus (Aphrophoridae), Kyrgyzstan, (D) Clastoptera obtusa (Clastopteridae), Illinois, U.S.A., (E) spittle mass of P. spumarius nymph, Illinois, U.S.A.
Cicadoidea: cicadas: (A) a hairy cicada, Tettigarcta crinita (Tettigarctidae), Australia, (B) Melampsalta calliope (Cicadidae), Illinois, U.S.A., (C) a periodical cicada, Magicicada cas-sini, with a 13-year life cycle, Illinois, U.S.A., (D) a dog day cicada, Tibicen sp., molting into the adult stage, Illinois, U.S.A.
FIGURE 2 Cicadoidea: cicadas: (A) a hairy cicada, Tettigarcta crinita (Tettigarctidae), Australia, (B) Melampsalta calliope (Cicadidae), Illinois, U.S.A., (C) a periodical cicada, Magicicada cas-sini, with a 13-year life cycle, Illinois, U.S.A., (D) a dog day cicada, Tibicen sp., molting into the adult stage, Illinois, U.S.A.
(Fig. 4). Together, these groups include over 40,000 described species. Morphologically, Auchenorrhyncha differ from other Hemiptera in having the antennal flagellum hairlike (aristoid), the rostrum (modified, beaklike labium) arising from the posteroventral surface of the head, a complex sound-producing tymbal apparatus, and the wing-coupling apparatus consisting of a long, downturned fold on the forew-ing and a short, upturned lobe on the hind wing. Auchenorrhyncha are abundant and ubiquitous insects, distributed worldwide in nearly all terrestrial habitats that support their host plants, but they are particularly diverse and speciose in the tropics. Some are important agricultural pests, injuring plants either directly through feeding and oviposition or indirectly through the transmission of plant pathogens.


PHYLOGENY AND CLASSIFICATION

Nomenclature

The monophyly of the four existing superfamilies of Auchenorrhyncha has long been accepted, but controversy persists regarding the relationships of these lineages to each other and to
Membracoidea: leafhoppers and treehoppers: (A) a brach-ypterous, grass-feeding leafhopper, Doraturopsis heros, Kyrgyzstan, (B) Pagaronia triunata (Cicadellidae), California, U.S.A., (C) Eurymeloides sp. (Cicadellidae), Australia, (D) fifth instar of Neotartessus flavipes (Cicadellidae), Australia, (E) female Aetalion reticulatum (Aetalionidae) guarding egg mass, Peru, (F) ant-attended aggregation of treehopper adults and nymphs (Membracidae: Notogonia sp.), Guyana.
FIGURE 3 Membracoidea: leafhoppers and treehoppers: (A) a brach-ypterous, grass-feeding leafhopper, Doraturopsis heros, Kyrgyzstan, (B) Pagaronia triunata (Cicadellidae), California, U.S.A., (C) Eurymeloides sp. (Cicadellidae), Australia, (D) fifth instar of Neotartessus flavipes (Cicadellidae), Australia, (E) female Aetalion reticulatum (Aetalionidae) guarding egg mass, Peru, (F) ant-attended aggregation of treehopper adults and nymphs (Membracidae: Notogonia sp.), Guyana.
various other fossil and extant hemipteran lineages. Consequently, no single classification scheme has gained universal acceptance, and the nomenclature of the various groups is presently unstable. Traditionally, Auchenorrhyncha were treated as one of three suborders of the order Homoptera. Fossil evidence, as well as phylogenetic analyses based on DNA sequences of extant taxa, suggest that Heteroptera (true bugs; Hemiptera, sensu stricto) arose from within Homoptera and, possibly, from within Auchenorrhyncha. Thus, many recent workers have combined Homoptera and Heteroptera into a single order. This order is usually referred to as Hemiptera (sensu lato), but some entomologists advocate using the ordinal name Rhynchota to avoid confusion with the more restricted definition of Hemiptera (Heteroptera) widely used in the literature. Some recent workers have further proposed dividing the Auchenorrhyncha into two suborders: Clypeorrhyncha for the lineage comprising Cicadoidea, Cercopoidea, and Membracoidea, and Archaeorrhyncha for Fulgoroidea. The older names Cicadomorpha and Fulgoromorpha, respectively (usually treated as infraorders within suborder Auchenorrhyncha), are more commonly used for these two groups. For convenience, and because the phylogenetic status of the group has not been elucidated satisfactorily, Auchenorrhyncha is retained here as the subordinal name with the caveat that this group may represent a paraphyletic assemblage rather than a monophyletic group. The current classification of families is presented in Table I.
Fulgoroidea: planthoppers: (A) female Stenocranus sp. (Delphacidae) covering oviposition site with wax, Illinois, U.S.A., (B) Chanithus scolopax (Dictyopharidae), Kyrgyzstan, (C) Metcalfa pru-inosa (Flatidae), Maryland, U.S.A., (D) Biolleyana sp. (Nogodinidae), Mexico, (E) Tettigometra sp. (Tettigometridae) nymphs tended by ants, Greece, (F) unidentified planthopper nymph completely covered with wax filaments, Guyana.
FIGURE 4 Fulgoroidea: planthoppers: (A) female Stenocranus sp. (Delphacidae) covering oviposition site with wax, Illinois, U.S.A., (B) Chanithus scolopax (Dictyopharidae), Kyrgyzstan, (C) Metcalfa pru-inosa (Flatidae), Maryland, U.S.A., (D) Biolleyana sp. (Nogodinidae), Mexico, (E) Tettigometra sp. (Tettigometridae) nymphs tended by ants, Greece, (F) unidentified planthopper nymph completely covered with wax filaments, Guyana.

Fossil Record

Auchenorrhyncha arose in the Paleozoic, first appearing in the fossil record in the Lower Permian (280 mya) and, judging from the abundance of forms described from Permian strata, they diversified explosively. These early auchenorrhynchans had adults with well-developed jumping abilities and somewhat resembled modern leafhoppers and spittlebugs, but nymphs (juveniles) associated with these insects were bizarrely flattened or biscuitlike, with short legs, foliaceous lobes on the head, thorax, and abdomen (similar to those of some modern Psyllidae) and elongate mouthparts, suggesting a sessile, cryptic lifestyle. The fulgoromorphan and cicadomorphan lineages (Table I) apparently diverged by the middle Permian. By the late Permian, Fulgoroidea appeared and Cicadomorpha (sensu lato) had diverged into the Pereboroidea, comprising three extinct families of large cicadalike insects, and the smaller Prosboloidea, from which the three modern cicadomorphan superfamilies apparently arose. Cicadomorphans with a greatly inflated frontoclypeus (Clypeata in the paleontological literature = Clypeorrhyncha) did not appear until the Mesozoic. Prior to that, the head of Cicadomorpha resembled that of modern Psyllidae in having the frontovertex extended ventrad on the face to the antennal ledges and the lateral ocelli situated close to the eyes. This change in head structure is thought to have been associated with a shift from phloem to xylem feeding. Xylem feeding was apparently the predominant feeding strategy of the group throughout the Mesozoic, but in the late Cretaceous or early Tertiary the major lineages of phloem-feeding leafhoppers and treehoppers, which predominate in

TABLE I

Classification of the Hemipteran Suborder Auchenorrhyncha (Synonyms and Common Names in Parentheses) Excluding Extinct Taxa

Auchenorrhyncha (Cicadinea)
Infraorder Cicadomorpha (Clypeorrhyncha, Clypeata) Superfamily Cercopoidea (spittlebugs, froghoppers) Aphrophoridae Cercopidae Clastopteridae Machaerotidae Superfamily Cicadoidea (cicadas)
Cicadidae (Platypediidae, Plautillidae, Tettigadidae,
Tibicinidae) Tettigarctidae (hairy cicadas) Superfamily Membracoidea (Cicadelloidea) Aetalionidae (Biturritiidae)
Cicadellidae (Eurymelidae, Hylicidae, Ledridae, Ulopidae,
leafhoppers) Melizoderidae
Membracidae (Nicomiidae, treehoppers) Myerslopiidae (Cicadellidae, in part) Infraorder Fulgoromorpha (Archaeorrhyncha, planthoppers) Superfamily Fulgoroidea Acanaloniidae Achilidae Achilixiidae Cixiidae Delphacidae Derbidae Dictyopharidae Eurybrachidae Flatidae
Fulgoridae (lantern flies)
Gengidae
Hypochthonellidae
Issidae
Kinnaridae
Lophopidae
Meenoplidae
Nogodinidae
Ricaniidae
Tettigometridae
Tropiduchidae
the recent fauna, arose. In these insects, the frontoclypeus became more flattened, probably because of the reduction in size of the cibarial dilator muscles. This was presumably in response to a shift from feeding on xylem, which is under negative pressure, to phloem, which is under positive pressure. Cicadoidea and Cercopoidea first appeared in the Triassic, and Membracoidea in the Jurassic. With the exception of Tettigarctidae, which arose in the late Triassic and is now confined to Australia, extant families of these groups do not appear in the fossil record until the Cretaceous or early Tertiary. Most Auchenorrhyncha from Baltic and Dominican amber of the Tertiary age are virtually indistinguishable from modern forms.

LIFE HISTORY Courtship

Adult male and female Auchenorrhyncha locate each other by means of species-specific acoustic courtship signals. These signals
are produced by specialized organs at the base of the abdomen called tymbals, present in both sexes (except female cicadas). A few cicadas and planthoppers are also able to use the stridulatory surfaces of their wings to produce sound. The loud, sometimes deafening, calls of many male cicadas are well known. In noncicadoids, the courtship calls are usually inaudible, being transmitted through the substrate, and distinct tympana are absent. The calls of some leafhoppers and planthoppers, audible only with special amplifying equipment, are among the most complex and beautiful of any produced by insects. Males move from plant to plant, signaling until they receive a response from a female. In addition to intensification of the vibra-tional signals, precopulatory behavior in some species may involve the male buzzing or flapping the wings, tapping the female with the legs, or repeatedly walking around or over the female. Copulation involves insertion of the male aedeagus into the female vulva at the base of the ovipositor and may last from a second or less to several hours, depending on the species. Females of most species seem to mate only once, while males often mate several times.

Oviposition and Nymphal Development

Females lay eggs singly or in batches, usually by either inserting them into plant tissue or depositing them on plant surfaces [Figs. 3(e), 3(f), and 4(a)]. In some groups, eggs are deposited in the soil or in litter. Egg batches may be covered with plant debris, wax filaments, or secretions produced by various internal glands. Eggs may or may not undergo diapause depending on the species and climate. After hatching, the juveniles [nymphs; Figs. 2(d), 3(d), 3(f), 4(e), and 4(f)] undergo five molts prior to reaching the adult stage. In most species the nymphs feed on aboveground parts of host plant, but in cicadas, Cercopidae, a few fulgoroid families, and a few leafhop-per genera, the nymphs are subterranean root feeders. Formation of galls, common among aphids and psyllids, is known in only one Auchenorrhyncha species (a leafhopper). Nymphal development requires from a few weeks to several years (in cicadas), depending on the species. Some species exhibit parental care behavior (see later).

BEHAVIOR AND ECOLOGY

Feeding and Digestion

Adult and nymphal Auchenorrhyncha feed by inserting the two pairs of feeding stylets (modified mandibles and maxillae) into the host plant tissue, injecting saliva, and ingesting fluid. Unlike Sternorrhyncha, in which the stylets pass between the cells of the host tissue (intercellular feeding), Auchenorrhyncha stylets usually pierce the cells (intracellular feeding). After selecting an appropriate feeding site based on visual and chemical cues, the insect presses the tip of the labium onto the plant surface and inserts the feeding stylets. Just prior to, and during, probing of the plant tissue with the stylets, the insect secretes sheath saliva that hardens on contact with air or fluid to form an impervious salivary sheath surrounding the stylets. The sheath forms an airtight seal that prevents leakage of air or fluid during feeding. Stylet probing continues until a suitable tissue is found (xylem, phloem, or mesophyll, depending on the species), after which feeding can commence. During feeding, watery saliva is injected into the plant to aid digestion and to prevent clogging of the stylet opening. This is also the mechanism by which the insect may infect the plant with pathogens (see later). Feeding may last from a few seconds to many hours at a time, depending on the auchenorrhynchan species and the quality of the plant tissue. During feeding, droplets of liquid excretion are ejected from the anus, several droplets per second in some xylem feeders.
Plant sap is a nutritionally imbalanced food source; phloem is high in sugar and xylem is, in general, nutrient poor and extremely dilute. Auchenorrhyncha have acquired various adaptations that enable them to convert the contents of plant sap into usable nutrients. Most Cicadomorpha have part of the midgut modified into a filter chamber that facilitates rapid removal of excess water. Fulgoroidea lack a distinct filter chamber but have the midgut tightly coiled and partially or completely enclosed in a sheath of specialized cells that apparently absorb solutes from the gut contents. A broad array of transovarially transmitted (i.e., from the mother through her eggs to her offspring) prokaryotic endosymbionts have also been identified in various Auchenorrhyncha species. The roles of these endosymbi-onts have not been fully elucidated, but presumably they function in the conversion of the nutritionally poor plant sap on which the insects feed into essential vitamins, amino acids, and sterols. The symbionts are housed either intracellularly in specialized fat body cells called mycetocytes, intracellularly in the fat body, or in the gut epithelium. Several distinct mycetomes, consisting of groups of myc-etocytes, are often present. In Cicadomorpha, each mycetome may house up to six different kinds of endosymbionts. In Fulgoroidea, only a single kind of endosymbiont is housed in each mycetome.

Host Associations

Nearly all Auchenorrhyncha are plant feeders; the few known exceptions (e.g., Fulgoroidea: Achilidae and Derbidae) feed on fungi as nymphs. Auchenorrhynchans use a wide variety of plants including mosses, horsetails, ferns, cycads, conifers, and angiosperms, but the vast majority of species feed on flowering plants. Most species appear to be restricted to a single genus or species of plants. Many species, particularly among the xylem-feeding groups, normally use a few or a single plant species but are capable of feeding and developing on a variety of alternate hosts if the preferred host is not available. A few xylem-feeding species have extremely broad host ranges. For example, the meadow spittlebug, Philaenus spumarius, with over 500 documented food plants, has the broadest known host range of any herbivorous insect. Phloem- and mesophyll-feeding species, comprising the majority of Auchenorrhyncha, tend to have narrower host ranges than xylem feeders, and many species appear to use a single plant family, genus, or species. Host associations appear to be conservative in some auchenorrhynchan lineages. Delphacidae and Cicadellidae (Deltocephalinae) include large numbers of grass- and sedge-specialist species and are among the dominant herbivores in grasslands. Most of the major lineages of Auchenorrhyncha do not exhibit a distinct preference for any particular plant taxon and usually include both host-generalist and host-specialist species. Some species alternate hosts during different stages in the life cycle or in different seasons. For example, nymphs of many leafhoppers and treehoppers develop on herbs, but the adult females oviposit on a woody host.

Migration

Most species of Auchenorrhyncha are relatively sedentary, completing their life cycle within a small area. Although most species have well-developed wings and are strong fliers, few seem to move more than a kilometer from their birthplace. Many species, particularly those inhabiting grasslands and deserts, are submacropterous or brachypterous [short winged; Fig. 3(a)] and, thus, incapable of sustained flight. Some of these species occasionally produce macrop-terous (long-winged) females that move to new patches of suitable habitat. Other species produce both short- and long-winged forms either simultaneously or in alternate generations. The proportion
of macropterous to brachypterous forms often varies in response to population density. Some Auchenorrhyncha species undergo annual migrations that may cover hundreds of kilometers. Not coinciden-tally, many of these accomplished migrants are important agricultural pests. Among the best studied of these are the brown planthopper (Nilaparvata lugens) and the potato leafhopper (Empoasca fabae). Neither of these species can normally overwinter in high latitudes. Populations build up in the tropical or subtropical parts of their range and migrate to higher latitudes each spring. They are assisted in their migratory flights by convection and favorable winds, and the initiation of migratory behavior is apparently triggered by favorable atmospheric conditions. Sporadic incidents of very-long-range migrations have also been documented. In one such incident in 1976, swarms of Balclutha pauxilla (Cicadellidae), probably originating from a source population in Angola, descended on Ascension Island, 2700 km away in the mid-Atlantic.

Thermoregulation

Most Auchenorrhyncha species appear to regulate their body temperature behaviorally, by seeking out microhabitats in which the ambient temperature remains within a narrow range and moving among alternate microhabitats as conditions change. In some cicadas, physiological mechanisms are also involved. Some species are facultatively endothermic, producing metabolic heat to facilitate calling, courtship, and other activities. This is usually accomplished by vibrating the flight or tymbal muscles until the body temperature rises to an optimal level. Some desert cicadas cool themselves by evaporation of excess water released through pores on the thorax and abdomen. In this way they are able to remain active at ambient temperatures that would kill other insects.

Defense and Escape

Because they are among the most abundant phytophagous insects in many habitats, Auchenorrhyncha are an important food source for numerous vertebrate and invertebrate predators (see Section Natural Enemies). Species of Auchenorrhyncha exhibit myriad strategies for avoiding predation. These range from relatively simple behaviors, such as dodging around to the opposite side of a leaf or branch as a predator approaches, or hiding under a leaf sheath, to complex mutualistic associations and mimicry. Adults of many species are strong flyers and nearly all (except cicadas) are also excellent jumpers. Juvenile (nym-phal) cicadas, spittlebugs, treehoppers, and some planthoppers are incapable of jumping and have adopted other strategies for avoiding predators. All cicada nymphs and many spittlebug and planthopper nymphs are subterranean; thus, their exposure to most predators is minimal. Spittlebug nymphs live within masses of froth, and machae-rotid nymphs live in calcareous tubes cemented to the host plant. The free-living nymphs of most other auchenorrhynchans appear to rely on cryptic coloration and body forms to escape detection by visual predators such as birds. For example, many treehopper nymphs are strongly flattened with the ventral surfaces of the body concave, enabling them to lie flat against the bark or leaf surfaces of their host plant. Others resemble plant parts such as bud scales or leaflets. Many planthopper nymphs secrete copious quantities of wax [Fig. 4(F)], with which they coat themselves and, often, surrounding parts of their host plants. The wax may prevent parasites and predators from grasping the nymphs, allowing them to leap away. Adults of some species mimic various venomous arthropods such as ants, wasps, robber flies, assassin bugs, and spiders. Some bear horns or spines on the pronotum [Membracidae; Fig. 3(F)] or scutellum [Machaerotidae; Fig. 1(B)] that make them physically difficult for some vertebrate predators to swallow. Many adult cercopids and membracids have conspicuous (aposematic) color patterns, presumably indicating that they are unpalatable. Others have the forewing apices marked with false eyespots, and a few (e.g., Fulgoroidea: Eurybrachidae) have prolongations resembling antennae; the head and thorax of such species often bear transverse lines resembling abdominal segmentation. Adults of various planthopper species mimic lizards, flowers, and lichens. Another strategy involves complex mutualistic associations with ants and other social hymenop-terans. Ant mutualism has been documented in numerous lineages of Fulgoroidea and Membracoidea and occurs universally in some groups [e.g., tettigometrid planthoppers Fig. 4(e) and eurymeline leaf-hoppers]. In such groups, the nymphs usually form aggregations that are tended by ants. The aggressive worker ants drive off predators and receive gifts of honeydew, a sugary excretion, from the nymphs. Ant mutualism may have facilitated the development of subsocial behavior in some groups (see Membracoidea section under Diversity).

Natural Enemies

Auchenorrhyncha are preyed upon by insectivorous vertebrates such as birds and lizards, as well as by invertebrate predators such as spiders, ants, assassin bugs, wasps, and robber flies. Auchenorrhyncha are also attacked by various parasitoids such as dryinid and chal-cidoid wasps, epipyropid moths, pipunculid flies, strepsipterans, and nematodes. Because they feed on plant sap, cicadomorphans are not usually susceptible to infection by viral, bacterial, or protozoan pathogens. Thus entomopathogenic fungi, which do not need to be ingested to infect insects, are the most important pathogens of Auchenorrhyncha.

Economic Importance

Although the vast majority of species of Auchenorrhyncha are benign, the group contains some of the most destructive pests of agriculture. Among the most important are the brown planthop-per, sugarcane planthopper (Perkinsiella saccharicida) , corn plan-thopper (Peregrinus maidis) , meadow spittlebug, beet leafhopper (Neoaliturus tenellus), potato leafhopper, corn leafhopper (Dalbulus spp.), African maize leafhopper (Cicadulina spp.), green rice leaf-hopper (Nephotettix spp.), and various grape leafhoppers (Arboridia and Erythroneura spp.).
Auchenorrhyncha injure plants directly through feeding or ovi-position or, more often, indirectly through the transmission of plant pathogens. Economic injury to plants involving cicadas, which occurs rarely, is mainly due to oviposition, although some species occasionally inflict feeding damage (e.g., on sugarcane). Spittlebugs injure plants primarily through feeding and through transmission of xylem-limited bacterial pathogens. Species of Cercopidae are the most significant pests of forage grasses in pastures in Latin America and are also destructive of sugarcane. Interestingly, much if not most of the economic damage done by spittlebugs is due to native spittlebug species colonizing nonnative hosts (e.g., introduced forage grasses, and clovers). Presumably, such plants lack natural resistance to spit-tlebugs and are more susceptible to injury.
Leafhoppers and planthoppers are among the most significant groups of vectors of plant pathogens, transmitting viruses, bacteria, and mycoplasmalike organisms. Over 150 species are known vectors of economically important plant pathogens. The insects usually acquire the pathogen by feeding on an infected plant, but some pathogens may be transmitted transovarially from mother to offspring. Phloem-limited viral and mycoplasmalike pathogens typically multiply within the vector and enter the plant when the insect injects saliva during feeding. Some xylem-limited bacterial pathogens (e.g., Xylella) are apparently unable to travel from the gut to the salivary glands and require regurgitation from the foregut during vector feeding to infect the plant. Annual losses to maize, rice, and sugarcane attributed to pathogens spread by leafhoppers and planthoppers are estimated in the hundreds of millions of dollars. Xylem-feeding cicadelline leafhoppers are also the main vectors of Xylella fastidiosa, which causes X diseases of stone fruits (Prunus spp.), Pierce’s disease of grape, citrus variegated chlorosis, and alfalfa dwarf.
Some Auchenorrhyncha species are considered to be beneficial. Cicadas are used as food by several human cultures. The use of Auchenorrhyncha in biocontrol of weeds has also begun to be explored. For example, a Neotropical treehopper species (Aconophora compressa) has been introduced into Australia for control of Lantana (Verbenaceae).

Control

Control of auchenorrhynchan pests has traditionally involved the use of conventional contact insecticides, but overuse of chemical insecticides has led to the development of resistance in many pest species and has suppressed populations of their natural enemies. Modern integrated pest management has promoted greater use of resistant plant varieties, cultural control (e.g., removal of litter to reduce numbers of overwintering individuals), and biological control by means of parasitoids and pathogens, as well as more judicious use of pesticides.

CAPTURE AND PRESERVATION

Auchenorrhyncha are most commonly collected by sweeping vegetation with a heavy canvas net. Many species are also attracted to lights. Vacuum collecting is effective for collecting from dense grassy vegetation where many species reside. A gasoline-powered leaf blower fitted with a vacuum attachment can be used to suck the insects from dense vegetation. A fine-mesh insect net bag taped to the end of the intake nozzle will capture the specimens. Other effective collecting methods include malaise trapping and insecticidal fogging of forest canopy. Auchenorrhyncha may be killed in a standard insect killing jar containing potassium cyanide or ethyl acetate, or by freezing.
Specimens for morphological study are usually mounted dry on pins or point mounts. Point mounts should be glued to the right side of the thorax. To identify the species of a specimen, it is often necessary to examine the male genitalia. To do this, the abdomen is removed and soaked in 10% potassium hydroxide solution for several hours (or boiled in the same solution for a few minutes) to clear the pigment. The abdomen is then rinsed in clean water containing a small amount of glacial acetic acid, rinsed again in pure water, and immersed in glycerine. After examination, the cleared abdomen is stored in a glass or plastic microvial pinned beneath the rest of the specimen. Auchenorrhyncha may also be preserved indefinitely in 80-95% ethanol, but this causes some green pigments to fade to yellow.

DIVERSITY

Cercopoidea

Cercopoidea (froghoppers and spittlebugs; Fig. 1 ) are characterized by the following combination of morphological characters: head with frontoclypeus inflated; median ocellus absent; ocelli on crown distant from margin; pronotum extended to scutellar suture; body clothed with fine setae; hind coxae conical, tibia without rows of setae but often with one or more conspicuous spines; male subgenital plate present. The superfamily comprises four families Aphrophoridae, Cercopidae, Clastopteridae, and Macherotidae. The first Cercopoidea (Procercopidae) appear in the fossil record during the Lower Jurassic. These insects retained a median ocellus and apparently lacked the dense setal covering of modern cercopoids. Aphrophoridae and Cercopidae did not appear until the middle Cretaceous; Clastopteridae and Machaerotidae apparently arose during the Tertiary.
Approximately 2500 species and 330 genera of Cercopoidea have been described. The classification has not been revised in over 50 years, and the phylogenetic status of most cercopoid genera and higher taxa remains unknown. Cercopidae [Fig. 1(A)] , the largest family, differs from Aphrophoridae [Fig. 1(C)], the next largest, in having the eyes slightly longer than wide and the posterior margin of the pronotum straight (instead of emarginate). The small families Machaerotidae and Clastopteridae differ from other Cercopoidea in having a well-developed appendix (distal membrane) on the forew-ing. Machaerotidae [Fig. 1(B)] differ from Clastopteridae [Fig. 1(D)] in having two or more r-m crossveins in the forewing and in lacking an outer fork on the radial vein of the hind wing.
Production of “spittle” is a unique characteristic of Cercopoidea [Fig. 1(E)]. Nymphs of Machaerotidae produce the froth during molts, while in other families nymphs live permanently surrounded by the froth. The lateral parts of nymphal abdominal segments are extended ventrally into lobes, which form an open or closed (in machaerotids) ventral cavity, filled with air. The nymphs introduce bubbles of air into their liquid excretion by bellowslike contractions of this device; periodically the tip of the abdomen is extended through the surface of spittle mass to channel air into the cavity. The same air supply is used for breathing via spiracles that open into the ventral cavity. The froth is stabilized by the action of the secretory products manufactured in the highly specialized Malpighian tubules of the nymphs and mixed into the main watery excreta. Wax secreted by plates of epidermal glands on the sixth through eighth abdominal terga (Batelli glands) may also help stabilize the froth.
The function of the spittle mass is not completely understood. It is usually assumed that it protects the insect from predators and desiccation. Cercopoid nymphs are sessile and live within the spittle mass (or, in Machaerotidae, inside fluid-filled tubes). In some species, nymphs tend to aggregate, forming large spittle masses containing hundreds of individual nymphs. Nymphs of Cercopidae apparently feed on roots, whereas aphrophorid and clastopterid nymphs occur on above-ground parts of their host plants. Nymphs of the Machaerotidae live immersed in liquid inside tubes cemented to the twigs of their host plants. The tubes are constructed from calcium carbonate and other salts secreted by the midgut and an organic matrix secreted by the Malpighian tubules. Adult cercopoids do not produce spittle and are free living. They cannot run, and often use only the front and middle legs to walk, dragging the extended hind legs. Consequently, they rely mostly on their strong jumping and flying abilities for movement.
Species of Cercopoidea are often restricted to particular habitats, but many if not most seem to be capable of utilizing a variety of host plants. Many species seem to prefer actinorrhizal and other nitrogen-fixing hosts, presumably because the xylem sap of such plants contains more amino acids and is more nutritious. Cercopoidea is a predominantly tropical group, occurring mostly in wet and mesic habitats. Nevertheless, the genus Clastoptera, has radiated extensively in north temperate North America, and Aphrophora comprises numerous arboreal species throughout the Holarctic. Cercopidae are primarily grassland insects, feeding on grasses and other herbs. The family Aphrophoridae includes both grass-feeding and arboreal species. Machaerotidae and Clastopteridae are primarily arboreal.
Members of the superfamily Cercopoidea occur worldwide. Cercopidae and Aphrophoridae are pantropical in distribution, with relatively depauperate faunas in the Holarctic. Machaerotidae are restricted to the Oriental and Australian regions. Clastopteridae are mostly New World animals, but one small genus, possibly mis-classified, occurs in the Oriental region. Most tribes are restricted to either the New or the Old World, and phyletic diversity seems to be highest in the Oriental region. A few genera (e.g., Philaenus and Aphrophora) are widespread, partly as a result of human activities, but most are restricted to a single biogeographic realm.

Cicadoidea

Cicadoidea (cicadas; Fig. 2) are distinguished from other extant Auchenorrhyncha in having fossorial front legs (in nymphs) and three ocelli grouped in a triangle on the crown of the head; in addition they lack the ability to jump. They are conspicuous insects because of their large size (1.5- 11 cm) and the loud courtship calls of the males. Most authorities recognize two families: Cicadidae and Tettigarctidae. Tettigarctidae [Cicadoprosbolidae in the paleonto-logical literature; Fig. 2(A)], which differ from Cicadidae in having the pronotum extended to the scutellum and lacking distinct tympana, are a relict group with two extant species in southern Australia and Tasmania and several fossil taxa dating to the Lower Jurassic. Cicadidae [Fig. 2(B-D)], which do not appear in the fossil record until the Paleocene, comprise two main (possibly polyphyletic) groups, those with the tymbals (sound-producing organs) concealed and those with exposed tymbals. These two groups are sometimes given status as separate families, Cicadidae (sensu stricto) and Tibicinidae, respectively. Together these groups comprise approximately 1300 extant species. Phylogenetic analyses of the major lineages are in progress and it is likely that the classification of the superfamily will be substantially revised in the near future.
Although cicadas almost always lay eggs on aboveground parts of their host plant, the nymphs drop to the ground soon after hatching and use modified (fossorial) front legs to burrow into the soil, excavating a subterranean feeding chamber adjacent to a root. They feed on the xylem of the roots of perennial plants, coating themselves and lining their burrows with “anal liquid” that appears to be similar to that produced by cercopoid nymphs. Development in most species requires from 2 to 6 years (13 or 17 years in the periodical cicadas of temperate North America). Larger nymphs of some species inhabiting wet habitats construct towers of mud that facilitate aeration of the burrow. Mature nymphs emerge from the ground and climb onto a vertical surface prior to molting into the adult stage [Fig. 2(D)]. As far as is known, all cicadas feed on xylem sap; hence the frontoclypeus is strongly inflated owing to the presence of strong cibarial dilator muscles. Like the Cercopoidea, cicadas do not walk or run well; instead they rely on flight to move over distances greater than a few centimeters. In some cicada species, males are sedentary, often forming aggregations and calling loudly in choruses to attract females. In others, the male calls are less audible, and males fly frequently from place to place in search of females. Male and female cicadas have auditory organs (tympana) at the base of the abdomen. Unlike other Auchenorrhyncha, female cicadas (except Tettigarcta) do not produce acoustic signals. Tettigarctidae differ from other cicadas in producing only substrate-borne signals (in males and females).
Cicadoidea are the most ecologically uniform of the Auchen-orrhyncha superfamilies. Nymphs of all species are subterranean root feeders, and adults feed on the aboveground parts of their host plants. Most cicada species tend to be associated with particular habitats, and many seem to be host plant specific. Sympatric species often call at different times of day or mature during different seasons, thus temporally partitioning their habitat. The cicada faunas of deserts and savannas are particularly rich in genera and species, but tropical rain forests also harbor a great diversity of species.
Cicadoidea occur worldwide but, like the other two cicado-morphan superfamilies, are largely a tropical group. A few genera (e.g., Cicada, Cicadetta), occur on several continents, but most are restricted to a single biogeographic realm. Most species appear to have fairly narrow geographic ranges. The high degree of endemism in many groups has proven useful in studies of biogeography, particularly in the geologically complex island areas of the Oriental and Australian regions.

Membracoidea

Membracoidea (leafhoppers and treehoppers; Fig. 3), by far the most speciose of the auchenorrhynchan superfamilies, are characterized morphologically by the narrow costal space of the forewing, the large, transversely articulated metathoracic coxae, the elongate hind femora, the longitudinal rows of enlarged setae on the hind tibiae, and the presence of scutellar apodemes. The superfamily includes Cicadellidae (leafhoppers), a paraphyletic taxon that apparently gave rise to a lineage comprising the three currently recognized families of treehoppers (Melizoderidae, Aetalionidae, and Membracidae). A fifth family, Myerslopiidae, consists of two genera of small, flightless, litter-dwelling insects found only in New Zealand and Chile and thought to represent a distinct, relatively primitive lineage. Together, these groups comprise nearly 25,000 described species, currently grouped into about 3500 genera.
Membracoidea first appeared in the Jurassic, represented by the extinct family Karajassidae. These early membracoids were leafhop-perlike insects with inflated faces (indicative of xylem feeding), and they retained a median ocellus and more primitive wing venation (forewing with CuA1 free distally), but nevertheless had acquired the rows of enlarged setae on the hind tibia characteristic of modern leaf-hoppers. The first Cicadellidae appeared in the Lower Cretaceous. Treehoppers (Aetalionidae and Membracidae) make their first appearance in Tertiary age Mexican and Dominican amber.
The largest family, Cicadellidae [Fig. 3(A-D)], is characterized by the presence of four rows of enlarged, spinelike setae on the hind tibia, a peg-and-socket joint between the hind coxae, and the production of brochosomes. Membracidae [Fig. 3(F)] , the next largest family, differ from Cicadellidae in having three or fewer rows of enlarged setae on the hind tibia, the male genital capsule with a lateral plate, and the pronotum enlarged, usually extended posteriorly over the scutellum and frequently bearing spines, horns, or other ornamentation. Like Membracidae, Aetalionidae [Fig. 3(E)] have three or fewer setal rows on the hind tibia but differ in having the front femur fused to the trochanter, in having the scutellum completely exposed, and in having digitiform processes on the female genital capsule. Melizoderidae also resemble Membracidae but differ in having parapsidal clefts on the mesonotum. Myerslopiidae, thought to be the most primitive membracoid family, are bizarre, flightless insects with elytralike forewings, vestigial ocelli, and a triangular mesocoxal meron resembling that of Cercopoidea. The phy-logenetic status and relationships among the major lineages are only beginning to be understood.
Cicadellidae are unique among insects in producing brocho-somes, which are minute proteinaceous granules synthesized in a specialized segment of the Malpighian tubules. After each molt, leafhoppers spread brochosomes over external surfaces of the body in an act known as anointing. Rows of modified setae on the legs of leafhoppers are used to distribute the brochosomes during anointing and subsequent acts of grooming. The brochosome coating of nym-phal and adult leafhoppers makes the integument extremely hydro-phobic and protects leafhoppers from becoming entrapped in drops of water and their own often copious excreta.
Ant mutualism and parental care behavior are widespread among treehoppers [Membracidae and Aetalionidae; Fig. 3(f)] . Females of many species guard their eggs [Fig. 3(e)] and sometimes remain with the nymphs throughout their development. In the treehopper tribes Hoplophorionini and Aconophorini, ant mutualism was lost but parental care was retained. In these groups, females are often able to drive off invertebrate predators by buzzing the wings and/or using the hind legs to kick the intruder off the plant. Acoustic alarm signals produced by the nymphs trigger the mother’s defensive response. Female Aconophora coat the stem of the host plant on either side of their egg masses with a sticky secretion that traps predators and parasitoids.
Most species of Membracoidea seem to have fairly narrow host and habitat requirements, and this has probably contributed to their remarkable diversity. Particularly notable are the large leafhopper faunas of temperate and tropical grasslands, where they are, by far, the most spe-ciose component of the grass-feeding herbivore fauna. Many leafhopper species in deserts and dry grasslands are flightless or only occasionally produce winged individuals. This trait has presumably reduced gene flow among populations and facilitated speciation in some lineages. In temperate forests of the Northern Hemisphere, the leafhopper subfamily Typhlocybinae has diversified extensively through specialization on individual tree genera and species. In tropical forest canopies, the treehop-per family Membracidae and the leafhopper subfamilies Idiocerinae and Typhlocybinae are particularly diverse. In Australia, the endemic fauna has radiated extensively on Eucalyptus. The North American treehopper tribe Smiliini has radiated extensively on oak (Quercus spp.).
Membracoidea are distributed worldwide. Among the five currently recognized families, Cicadellidae and Membracidae occur on all continents except Antarctica. Aetalionidae have a disjunct neotropical/oriental distribution, Melizoderidae are restricted to South America, and Myerslopiidae occur only in New Zealand and Chile. Most species and genera are restricted to a single continent; many tribes and subfamilies are also restricted to particular continents.

Fulgoroidea

Fulgoroidea (planthoppers; Fig. 4) differ from other Auchenor-rhyncha in having the frons occupying most of the facial part of the head and usually with distinct longitudinal carinae, tegulae usually present at the base of the forewings, the second segment (pedicel) of the antenna enlarged and (usually) bearing conspicuous placoid sen-silla, the forewing anal veins confluent basad of the claval margin, and longitudinal carinae usually present on the head, pronotum, scutel-lum, and legs. Most have two ocelli dorsolaterally on the head, anterad of the compound eyes, but some Cixiidae also have a medial ocellus on the face. Fulgoroidea first appear in the fossil record in the middle Permian, and Cixiidae appear in the Jurassic. Other modern fulgo-roid families apparently arose during the Cretaceous or early Tertiary. Twenty families are currently recognized, comprising approximately 1400 genera and 12,000 species. Fulgoroid families are distinguished from each other based mainly on the shape of the head, the spination of the hind tarsi, and the venation of the forewing. Fulgoroidea are the most morphologically variable of all auchenorrhynchan superfamilies, ranging from 1 mm to over 9 cm in length and exhibiting extensive variation in head shape, wing venation, and genital morphology.
Unlike Cicadomorphans, nymphs of Fulgoroidea apparently do not coat themselves with specialized Malpighian tubule secretions. Instead, they produce wax from specialized glands on the abdominal terga and other parts of the body. The wax forms a hydrophobic coating and may conceal some insects from predators. Adult females of many fulgoroid families also produce wax, with which they coat their eggs [Fig. 4(a)]. In certain tropical fulgoroid species, adults of both sexes produce strands of wax up to 75 cm in length. Aggregation behavior with or without ant mutualism has been documented for nymphs and adults in a few fulgoroid families, but egg guarding is known only in Tettigometridae.
In contrast to the ecologically similar Cicadoidea, the Fulgoroidea are the most ecologically diverse superfamily of Auchenorrhyncha. Nymphs of Derbidae and Achilidae live under bark or in litter, feeding on fungi, while nymphs of Cixiidae, Hypochthonellidae, and Kinnaridae are subterranean root feeders. At least four families include cavernicolous (cave-dwelling) species. Ant mutualism has been documented in several fulgoroid families and seems to occur universally among Tettigometridae [Fig. 4(e) ) , nymphs of which usually inhabit ant nests. Nymphs of most remaining families and nearly all adults feed on the aboveground parts of vascular plants and most seem to be host specialists. Planthopper species usually feed on woody dicotyledonous plants, but most Delphacidae are grass or sedge specialists. Several species of Delphacidae feed on emergent plants in marshes and are capable of walking on the surface of the water. Delphacidae primarily inhabit temperate and tropical grasslands, and diverse faunas of Issidae, Dictyopharidae (Orgeriinae), and Tettigometridae occur in deserts.
Fulgoroidea occur throughout the temperate and tropical regions of the world but are most diverse in the tropics. The Old World tropics harbor the greatest numbers of described families, genera, and species, but the neotropical fauna is less well studied and may be comparable in diversity. The holarctic fauna is rich in Delphacidae and Issidae, but most other families are poorly represented or absent. Tettigometridae, Ricaniidae, Gengidae, Hypochthonellidae, and Meenoplidae are apparently restricted to the Old World. Some genera, particularly in Cixiidae and Delphacidae, are also cosmopolitan in distribution, but most appear to be restricted to a single biogeographic realm.

Next post:

Previous post: