Geoscience Reference
In-Depth Information
Box 12.6: Algorithm for Computation of Coefficients
In order
to perform the required calculations
it
is convenient
to
define an auxiliary function W j ( i , q )withasproperties W 1 i
ðÞ ¼
;
q
0
;
W 0 i
ðÞ
;
q
p j q j W i q
N
j
¼
W i q
ðÞ ¼
ðÞ
k j i
ðÞ
;
q
ð
j
¼
1, 2,
...
N
Þ
. From the
recurrence
formula for Krawtchouck polynomials, it can be derived that ( j +1) W j +1 ( i , q )
+[ i
Np + j ( p
q )] W j ( i , q )+( N
j +1) pqW j 1 ( i , of q )
¼
0. Consequently,
N
N
the coefficients of
ˈ 1 i ¼
j ¼ 1 c j k j ( i , q 1 )sa isfy c j ¼
j ¼1 ˈ 1 i W j ( i , q 1 ). The
correlation coefficient
ˁ
then can be obtained from the variance
1 c j 2
2 j W ( q 1 ) and, finally, the values
2
j
σ
¼
ˁ
ˈ 2 i corresponding to
ˈ 1 i become
¼
p 1
p 2
j
ij
X N
j ¼0
p 1
p 2
i
j
ˈ 2 i ¼
1
ˈ 1 j .
Fig. 12.52 Content of acidic volcanics in 768 square cells (Abitibi area, Canadian Shield)
measuring 10 km on a side; Q - Q plot of cell values similar to Fig. 12.46 (Source: Agterberg
2005 , Fig. 2)
For example, it will be attempted to determine the Abitibi acidic volcanics
frequency distribution of the 48 values for 40-km cells shown in Fig. 12.48 from
the frequency distribution of the 768 values for 10-km cells shown in Fig. 12.49
plus an estimate of variance s 2 ¼
0.00386 for the 40-km cells. It can be assumed
Search WWH ::




Custom Search