Biomedical Engineering Reference
In-Depth Information
20. Chapman, C.L., et al., Plasma polymer thin film depositions to regulate gas permeability
through nanoporous track etched membranes. Journal of Membrane Science, 2008. 318(1-2):
p. 137-144.
21. Timmons, R.B. and A.J. Griggs, Pulsed plasma polymerizations. Plasma Polymer Films:
p. 217-245.
22. Han, L.M. and R.B. Timmons, Pulsed-plasma polymerization of 1-vinyl-2-pyrrolidone:
Synthesis of a linear polymer. Journal of Polymer Science Part A Polymer Chemistry, 1998.
36: p. 3121-3129.
23. Zhang, J., et al., Investigation of the plasma polymer deposited from pyrrole. Thin solid films,
1997. 307(1-2): p. 14-20.
24. Rinsch, C.L., et al., Pulsed radio frequency plasma polymerization of allyl alcohol: Controlled
deposition of surface hydroxyl groups. Langmuir, 1996. 12(12): p. 2995-3002.
25. Cross, J.D., E.A. Strychalski, and H.G. Craighead, Size-dependent DNA mobility in nanochan-
nels. Journal of Applied Physics, 2007. 102: p. 024701.
26. Fyta, M.G., et al., Multiscale coupling of molecular dynamics and hydrodynamics: application
to DNA translocation through a nanopore. Arxiv preprint physics/0701029, 2007.
27. Ramachandran, A., et al., Characterization of DNA-Nanopore Interactions by Molecular
Dynamics. American Journal of Biomedical Sciences, 2009. 1(4): p. 344-351.
28. KalĀ“, L., et al., NAMD2: Greater Scalability for Parallel Molecular Dynamics* 1. Journal
of Computational Physics, 1999. 151(1): p. 283-312.
29. MacKerell Jr, A.D., et al., All-atom empirical potential for molecular modeling and dynamics
studies of proteins. Journal of Physical Chemistry B-Condensed Phase, 1998. 102(18):
p. 3586-3616.
30. Aksimentiev, A., et al., Microscopic kinetics of DNA translocation through synthetic nano-
pores. Biophysical journal, 2004. 87(3): p. 2086-2097.
31. Meller, A., et al., Rapid nanopore discrimination between single polynucleotide molecules.
Proceedings of the National Academy of Sciences of the United States of America, 2000.
97(3): p. 1079.
32. Xiao, K.P., et al., A chloride ion-selective solvent polymeric membrane electrode based on
a hydrogen bond forming ionophore. Anal. Chem, 1997. 69(6): p. 1038-1044.
33. Minami, H., et al., An evaluation of signal amplification by the ion channel sebsir based on a
glutamate receptor ion channel protein. Analytical Sciences, 1991. 7(Supple): p. 1675-1676.
34. Kuramitz, H., et al., Electrochemical immunoassay at a 17-estradiol self-assembled monolayer
electrode using a redox marker. The Analyst, 2003. 128(2): p. 182-186.
35. Aoki, H. and Y. Umezawa, Trace analysis of an oligonucleotide with a specific sequence using
PNA-based ion-channel sensors. The Analyst, 2003. 128(6): p. 681-685.
36. Gadzekpo, V.P.Y., et al., Development of an ion-channel sensor for heparin detection.
Analytica Chimica Acta, 2000. 411(1-2): p. 163-173.
37. Ali, M., et al., Chemical modification of track-etched single conical nanopores inducing
inversed inner wall polarity. GSI Annu. Rep. 2006, 2007. 1: p. 323.
38. Lee, S.B., et al., Antibody-based bio-nanotube membranes for enantiomeric drug separations.
Science, 2002. 296(5576): p. 2198.
39. Siwy, Z., et al., Conical-nanotube ion-current rectifiers: the role of surface charge. Journal
of the American Chemical Society, 2004. 126(35): p. 10850.
40. Siwy, Z., et al., Protein biosensors based on biofunctionalized conical gold nanotubes. Journal
of the American Chemical Society, 2005. 127(14): p. 5000.
41. Manning, M., et al., A versatile multi-platform biochip surface attachment chemistry.
Materials Science & Engineering C, 2003. 23(3): p. 347-351.
42. Chen, P., et al., Probing single DNA molecule transport using fabricated nanopores. Nano
Letters, 2004. 4(11): p. 2293-2298.
43. Meller, A., L. Nivon, and D. Branton, Voltage-driven DNA translocations through a nanopore.
Physical Review Letters, 2001. 86(15): p. 3435-3438.
Search WWH ::




Custom Search