Biomedical Engineering Reference
In-Depth Information
nanopore. The speed at which it translocates means that many, many trials must be
performed in order to see a concrete difference in translocation time such as
in Fig. 5.9 . Finding ways to emphasize and increase this difference would make
the detection resolution much clearer and require fewer trials. The push is on to
develop a nanopore sensor which can detect each base of any DNA sequence
efficiently, quickly and cheaply.
References
1. Iqbal, S.M., D. Akin, and R. Bashir, Solid-state nanopore channels with DNA selectivity.
nature nanotechnology, 2007. 2(4): p. 243-248.
2. Li, J., et al., Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(6843):
p. 166-169.
3. Stein, D., J. Li, and J.A. Golovchenko, Ion-beam sculpting time scales. Physical review letters,
2002. 89(27): p. 276106.
4. Storm, A.J., et al., Fabrication of solid-state nanopores with single-nanometre precision.
Nature materials, 2003. 2(8): p. 537-540.
5. Wu, S., S.R. Park, and X.S. Ling, Lithography-free formation of nanopores in plastic
membranes using laser heating. Nano Lett, 2006. 6(11): p. 2571-2576.
6. Park, S.R., H. Peng, and X.S. Ling, Fabrication of nanopores in silicon chips using feedback
chemical etching. Small, 2007. 3(1): p. 116.
7. Chang, H., et al., Fabrication and characterization of solid-state nanopores using a field
emission scanning electron microscope. Applied Physics Letters, 2006. 88: p. 103109.
8. Sato, K., et al., Anisotropic etching rates of single-crystal silicon for TMAH water solution as a
function of crystallographic orientation. Sensors & Actuators: A. Physical, 1999. 73(1-2):
p. 131-137.
9. Sundaram, K.B., A. Vijayakumar, and G. Subramanian, Smooth etching of silicon using TMAH
and isopropyl alcohol for MEMS applications. Microelectronic Engineering, 2005. 77(3-4):
p. 230-241.
10. Biance, A.L., et al., Focused ion beam sculpted membranes for nanoscience tooling. Micro-
electronic Engineering, 2006. 83(4-9): p. 1474-1477.
11. Gierak, J., et al., Sub-5 nm FIB direct patterning of nanodevices. Microelectronic Engineering,
2007. 84(5-8): p. 779-783.
12. Gadgil, V.J., et al., Fabrication of nano structures in thin membranes with focused ion beam
technology. Surface & Coatings Technology, 2009. 203(17-18): p. 2436-2441.
13. Danelon, C., et al., Fabrication and functionalization of nanochannels by electron-beam-
induced silicon oxide deposition. Nano Lett, 2005. 5: p. 403-407.
14. Nilsson, J., et al., Localized functionalization of single nanopores. Advanced Materials, 2006.
18(4): p. 427-431.
15. Harrell, C.C., et al., DNA-nanotube artificial ion channels. Journal of the American Chemical
Society, 2004. 126(48): p. 15646.
16. Chen, P., et al., Atomic layer deposition to fine-tune the surface properties and diameters of
fabricated nanopores. Nano Letters, 2004. 4(7): p. 1333-1337.
17. Heng, J.B., et al., Stretching DNA using the electric field in a synthetic nanopore. Nano letters,
2005. 5(10): p. 1883.
18. Kim, M.J., et al., Rapid fabrication of uniformly sized nanopores and nanopore arrays for
parallel DNA analysis. Adv. Mater, 2006. 18(23): p. 3149-3153.
19. Kim, M.J., et al., Characteristics of solid-state nanometre pores fabricated using a transmis-
sion electron microscope. Nanotechnology, 2007. 18: p. 205302.
Search WWH ::




Custom Search