Biomedical Engineering Reference
In-Depth Information
44. Fologea, D., et al., Slowing DNA translocation in a solid-state nanopore. Nano Lett., 2005.
5: p. 1734-1737.
45. Kim, Y.R., et al., Nanopore sensor for fast label-free detection of short double-stranded DNAs.
Biosensors and Bioelectronics, 2007. 22(12): p. 2926-2931.
46. Guo, Z., et al., Direct fluorescence analysis of genetic polymorphisms by hybridization
with oligonucleotide arrays on glass supports. Nucleic Acids Research, 1994. 22(24): p. 5456.
47. Balladur, V., A. Theretz, and B. Mandrand, Determination of the main forces driving
DNA oligonucleotide adsorption onto aminated silica wafers. Journal of colloid and interface
science, 1997. 194(2): p. 408-418.
48. Fang, Y. and J.H. Hoh, Early intermediates in spermidine-induced DNA condensation on
the surface of mica. J. Am. Chem. Soc, 1998. 120(35): p. 8903-8909.
49. Umehara, S., et al., Current rectification with poly- L -lysine-coated quartz nanopipettes.
Nano Lett, 2006. 6(11): p. 2486-2492.
50. Wang, G., et al., Electrostatic-gated transport in chemically modified glass nanopore electro-
des. J. Am. Chem. Soc, 2006. 128(23): p. 7679-7686.
51. Wanunu, M. and A. Meller, Chemically modified solid-state nanopores. Nano Letters, 2007.
7(6): p. 1580-1585.
52. Jang, L.S. and H.K. Keng, Modified fabrication process of protein chips using a short-chain
self-assembled monolayer. Biomedical Microdevices, 2008. 10(2): p. 203-211.
53. Gyurcs´nyi, R.E., T. Vigassy, and E. Pretsch, Biorecognition-modulated ion fluxes through
functionalized gold nanotubules as a novel label-free biosensing approach. Chemical Com-
munications, 2003. 2003(20): p. 2560-2561.
54. Zhao, Q., et al., Detecting SNPs using a synthetic nanopore. Nano letters, 2007. 7(6): p. 1680.
55. Kohli, P., et al., DNA-functionalized nanotube membranes with single-base mismatch
selectivity. Science, 2004. 305(5686): p. 984.
56. Vlassiouk, I., P. Takmakov, and S. Smirnov, Sensing DNA hybridization via ionic conductance
through a nanoporous electrode. Langmuir, 2005. 21(11): p. 4776-4778.
57. Pretsch, E., The new wave of ion-selective electrodes. Trends in Analytical Chemistry, 2007.
26(1): p. 46-51.
58. Howorka, S., S. Cheley, and H. Bayley, Sequence-specific detection of individual DNA strands
using engineered nanopores. Nature biotechnology, 2001. 19(7): p. 636-639.
59. Berezhkovskii, A.M. and S.M. Bezrukov, Optimizing transport of metabolites through
large channels: molecular sieves with and without binding. Biophysical
journal, 2005.
88(3): p. 17-19.
60. Bauer, W.R. and W. Nadler, Molecular transport through channels and pores: Effects of
in-channel interactions and blocking. Proceedings of the National Academy of Sciences, 2006.
103(31): p. 11446.
61. Chaara, M. and R.D. Noble, Effect of convective flow across a film on facilitated transport.
Separation Science and Technology, 1989. 24(11): p. 893-903.
62. Noble, R.D., Generalized microscopic mechanism of facilitated transport in fixed site carrier
membranes. Journal of membrane science, 1992. 75(1-2): p. 121-129.
63. Liu, Y. and S.M. Iqbal, A mesoscale model of DNA interaction with functionalized nanopore.
Applied Physics Letters, 2009. 95: p. 223701.
64. Brogan, K.L., et al., Direct oriented immobilization of F (ab) antibody fragments on gold.
Analytica Chimica Acta, 2003. 496(1-2): p. 73-80.
65. Kim, B.Y., et al., Direct Immobilization of Fabin Nanocapillaries for Manipulating Mass-
Limited Samples. J. Am. Chem. Soc, 2007. 129(24): p. 7620-7626.
66. Benson, D.E., et al., Design of bioelectronic interfaces by exploiting hinge-bending motions in
proteins. Science, 2001. 293(5535): p. 1641.
67. Tripathi, A., et al., Nanobiosensor Design Utilizing a Periplasmic E. coli Receptor
Protein Immobilized within Au/Polycarbonate Nanopores. Biosens. Bioelectron, 2003.
19: p. 249-259.
68. Uram, J.D., et al., Submicrometer pore-based characterization and quantification of antibody-
virus interactions. Small (Weinheim an der Bergstrasse, Germany), 2006. 2(8-9): p. 967.
Search WWH ::




Custom Search