Chemistry Reference
In-Depth Information
231. Z. Guo and W. Yang, Int. J. Mech. Sci. , 48 , 145 (2006). MPM/MD Handshaking Method for
Multiscale Simulation and Its Application to High Energy Cluster Impacts.
232. H. Lu, N. P. Daphalapurkar, B. Wang, S. Roy, and R. Komanduri, Philos. Mag. , 86 , 2971
(2006). Multiscale Simulation fromAtomistic to Continuum-CouplingMolecular Dynamics
(MD) with the Material Point Method (MPM).
233. N. P. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri, Int. J. Fract. , 143 , 79 (2007).
Simulation of Dynamic Crack Growth Using the Generalized Interpolation Material Point
(GIMP) Method.
234. E. Saether, D. Phillips, V. Yamakov, and E. Glaessgen, Special Session on Nanostructured
Materials at the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference , Austin, Texas, Apr. 18-21, 2005. Multiscale Modeling for the
Analysis of Grain-Scale Fracture within Aluminum Microstructures.
235. B. Q. Luan, S. Hyun, J. F. Molinari, N. Bernstein, and M. O. Robbins, Phys. Rev. E , 74 ,
046710 (2006). Multiscale Modeling of Two-Dimensional Contacts.
236. N. Chandra, S. Namilae, and A. Srinivasan, Mater. Proc. Design: Model., Simul. Appl. , 712 ,
1571 (2004). Linking Atomistic and Continuum Mechanics Using Multiscale Models.
237. S. Namilae and N. Chandra, J. Eng. Materials Tech. , 127 , 222 (2005). Multiscale Model to
Study the Effect of Interfaces in Carbon Nanotube-Based Composites.
238. Y. T. Gu and L. C. Zhang, Multiscale Model. Simul. , 5 , 1128 (2006). A Concurrent Multiscale
Method Based on the Meshfree Method and Molecular Dynamics Analysis.
239. P. A. Deymier and J. O. Vasseur, Phys. Rev. B , 66 , 134106 (2002). Concurrent Multiscale
Model of an Atomic Crystal Coupled with Elastic Continua.
240. K. Muralidharan, P. A. Deymier, and J. H. Simmons, Model. Simul. Mater. Sci. Eng. , 11 , 487
(2003). A Concurrent Multiscale Finite Difference Time Domain/Molecular Dynamics
Method for Bridging an Elastic Continuum to an Atomic System.
241. N. Choly, G. Lu, W. E, and E. Kaxiras, Phys. Rev. B , 71 , 094101 (2005). Multiscale
Simulations in Simple Metals: A Density-Functional-Based Methodology.
242. E. Chacon, J. E. Alvarellos, and P. Tarazona, Phys. Rev. B , 32 , 7868 (1985). Nonlocal Kinetic
Energy Functional for Nonhomogeneous Electron Systems.
243. P. Garcia-Gonzalez, J. E. Alvarellos, and E. Chacon, Phys. Rev. B , 53 , 9509 (1996). Nonlocal
Kinetic-Energy-Density Functionals.
244. L. W. Wang andM. P. Teter, Phys. Rev. B , 45 , 13196 (1992). Kinetic-Energy Functional of the
Electron Density.
245. Y. A. Wang, N. Govind, and E. A. Carter, Phys. Rev. B , 58 , 13465 (1998). Orbital-Free
Kinetic-Energy Functionals for the Nearly Free Electron Gas.
246. Y. A. Wang, N. Govind, and E. A. Carter, Phys. Rev. B , 60 , 16350 (1999). Orbital-Free
Kinetic-Energy Density Functionals with a Density-Dependent Kernel.
247. T. A. Wesolowski and A. Warshel, J. Phys. Chem. , 97 , 8050 (1993). FrozenDensity Functional
Approach for Ab Initio Calculations of Solvated Molecules.
248. T. Kl ¨ ner, N. Govind, Y. A. Wang, and E. A. Carter, Phys. Rev. Lett. , 88 , 209702 (2002).
Kl ¨ ner et al. Reply.
249. M. Fago, R. L. Hayes, E. A. Carter, and M. Ortiz, Phys.Rev.B , 70 , 100102(R) (2004). Density-
Functional-Theory-Based Local QuasicontinuumMethod: Prediction of DislocationNucleation.
250. R. L. Hayes, M. Fago, M. Ortiz, and E. A. Carter, Multiscale Model. Simul. , 4 , 359 (2005).
Prediction of Dislocation Nucleation During Nanoindentation by the Orbital-Free Density
Functional Theory Local Quasi-Continuum Method.
251. R. L. Hayes, G. Ho, M. Ortiz, and E. A. Carter, Philos. Mag. , 86 , 2343 (2006). Prediction of
Dislocation Nucleation During Nanoindentation of Al 3 Mg by the Orbital-Free Density
Functional Theory Local Quasicontinuum Method.
252. V. Gavini, K. Bhattacharya, and M. Ortiz, J. Mech. Phys. Solids , 55 , 697 (2007). Quasi-
Continuum Orbital-Free Density-Functional Theory: A Route to Multi-Million Atom Non-
Periodic DFT Calculation.
Search WWH ::




Custom Search