Chemistry Reference
In-Depth Information
208. S.D. Bond, B. J. Leimkuhler, and B. B. Laird, J. Comput. Phys. , 151 , 114 (1999). The Nose-
Poincare Method for Constant Temperature Molecular Dynamics.
209. B. L. Holian and R. Ravelo, Phys. Rev. B , 51 , 11275 (1995). Fracture Simulations Using Large-
Scale Molecular Dynamics.
210. S. J. Zhou, P. S. Lomdahl, R. Thomson, and B. L. Holian, Phys. Rev. Lett. , 76 , 2318 (1996).
Dynamic Crack Processes via Molecular Dynamics.
211. H. Gao, J. Mech. Phys. Solids , 44 , 1453 (1996). A Theory of Local Limiting Speed in Dynamic
Fracture.
212. P. Gumbsch, S. J. Zhou, and B. L. Holian, Phys. Rev. B , 55 , 3445 (1997). Molecular Dynamics
Investigation of Dynamic Crack Stability.
213. D. Holland and M. Marder, Phys. Rev. Lett. , 80 , 746 (1998). Ideal Brittle Fracture of Silicon
Studied with Molecular Dynamics.
214. W. Cai, M. de Koning, V. V. Bulatov, and S. Yip, Phys. Rev. Lett. 85 , 3213 (2000). Minimizing
Boundary Reflections in Coupled-Domain Simulations.
215. G. J. Wagner, E. G. Karpov, and W. K. Liu, Comput. Methods Appl. Mech. Eng. , 193 , 1579
(2004). Molecular Dynamics Boundary Conditions for Regular Crystal Lattices.
216. E. G. Karpov, G. J. Wagner, and W. K. Liu, Int. J. Numer. Methods Eng. , 62 , 1250 (2005). A
Green's Function Approach to Deriving Non-Reflecting Boundary Conditions in Molecular
Dynamics Simulations.
217. X. Li andW. E, Commun. Comput. Phys. , 1 , 135 (2006). Variational Boundary Conditions for
Molecular Dynamics Simulation of Solids at Low Temperature.
218. X. Li and W. E, Phys. Rev. B , 76 , 104107 (2007). Variational Boundary Conditions for
Molecular Dynamics Simulations of Crystalline Solids at Finite Temperature: Treatment of
the Thermal Bath.
219. C. Schafer,H.M. Urbassek, L. V. Zhigilei, and B. J. Garrison, Comput.Mat. Sci. , 24 , 421 (2002).
Pressure-Transmitting Boundary Conditions for Molecular-Dynamics Simulations.
220. H. S. Park, E. G. Karpov, and W. K. Liu, Int. J. Numer. Methods Eng. 64 , 237 (2005). Non-
reflecting Boundary Conditions for Atomistic, Continuum and Coupled Atomistic/Conti-
nuum Simulations.
221. J. Z. Yang and X. T. Li, Phys. Rev. B , 73 , 224111 (2006). Comparative Study of Boundary
Conditions for Molecular Dynamics Simulations of Solids at Low Temperature.
222. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem.
Phys., 81 , 3684 (1984). Molecular Dynamics with Coupling to an External Bath.
223. D. Wu and D. Chandler, in Introduction to Modern Statistical Mechanics , Oxford University
Pres, New York, 1988. Thermodynamics: Fundamentals.
224. J. Fish, and V. Belsky, Comput. Methods Appl. Mech. Eng. , 126 , 1 (1995). Multigrid Method
for Periodic Heterogeneous Media Part 1: Convergence Studies for One-Dimensional Case.
225. J. Fish, and V. Belsky, Comput. Methods Appl. Mech. Eng. , 126 , 17 (1995). MultigridMethod
for Periodic Heterogeneous Media Part 2: Multiscale Modeling and Quality Control in
Multidimensional Case.
226. J. D. Moulton, J. E. Dendy, and J. M. Hyman, J. Comput. Phys. , 141 , 1 (1998). The Black Box
Multigrid Numerical Homogenization Algorithm.
227. D. K. Datta, R. C. Picu, andM. S. Shephard, Int. J. Multiscale Comput. Eng. , 2 (3), 401 (2004).
Composite Grid Atomistic Continuum Method: An Adaptive Approach to Bridge Con-
tinuum with Atomistic Analysis.
228. J. Fish and W. Chen, Comput. Methods Appl. Mech. Eng. , 193 , 1693 (2004). Discrete-to-
Continuum Bridging Based on Multigrid Principles.
229. H. Waisman and J. Fish, Comput. Methods Appl. Mech. Eng. , 195 , 6542 (2006). A Space-
Time Multilevel Method for Molecular Dynamics Simulations.
230. B. Wang, V. Karuppiah, H. Lu, S. Roy, and R. Komanduri, Mech. Adv. Mater. Struct. , 12 , 471
(2005). Two-Dimensional MixedMode Crack Simulation Using the Material Point Method.
Search WWH ::




Custom Search