Chemistry Reference
In-Depth Information
253. G. Lu, E. B. Tadmor, and E. Kaxiras, Phys. Rev. B , 73 , 024108 (2006). From Electrons to
Finite Elements: A Concurrent Multiscale Approach for Metals.
254. C. Woodward and S. I. Rao, Philos. Mag. A , 81 , 1305 (2001). Ab-Initio Simulation of Isolated
Screw Dislocations in bcc Mo and Ta.
255. C. Woodward and S. I. Rao, Phys. Rev. Lett. 88 , 216402 (2002). Flexible Ab Initio Boundary
Conditions: Simulating Isolated Dislocations in bcc Mo and Ta.
256. C. Woodward, Mater. Sci. Eng. A , 400-401 , 59 (2005). First-Principles Simulations of
Dislocation Cores.
257. G. Kresse and J. Furthm ¨ ller, Comput. Mater. Sci. , 6 , 15 (1996). Efficiency of Ab-Initio Total
Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set.
258. G. Kresse and J. Furthm ¨ ller, Phys. Rev. B , 54 , 11169 (1996). Efficient Iterative Schemes for
Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set.
259. G. Kresse and J. Hafner, Phys. Rev. B , 47 , 558 (1993). Ab Initio Molecular Dynamics for
Liquid Metals.
260. G. Kresse and J. Hafner, Phys. Rev. B , 49 , 14251 (1994). Ab Initio Molecular-Dynamics
Simulation of the Liquid-Metal Amorphous Semiconductor Transition in Germanium.
261. G. Kresse and J. Hafner, J. Phys.: Condens. Matt. , 6 , 8245 (1994). Norm-Conserving and
Ultrasoft Pseudopotentials for First-Row and Transition Elements.
262. F. Tavazza, A. M. Chaka, and L. E. Levine, Computational Modeling and Simulation of
Materials, III, Part A , Cimtec-Techna Group, Faenza, Italy p. 657, 2004. Atomistic Insight
into Dislocation Dynamics in Metal Forming.
263. F. Tavazza, L. E. Levine, and A. M. Chaka, Int. J. Mod. Phys. C (in press). A Hybrid,
Quantum-Classical Approach for the Computation of Dislocation Properties in Real
Materials: Method, Limitations and Applications.
264. F. Tavazza, R. Wagner, A. M. Chaka, and L. E. Levine, Mater. Sci. Eng. A , 400-401 ,72
(2005). Vacancy Formation Energy near an Edge Dislocation: A Hybrid Quantum-Classical
Study.
265. G. Cs ´nyi, T. Albaret, M. C. Payne, and A. De Vita, Phys. Rev. Lett. , 93 , 175503 (2004).
''Learn on the Fly'': A Hybrid Classical and Quantum-Mechanical Molecular Dynamics
Simulation.
266. M. C. Payne, G. Cs ´nyi, T. Albaret, and A. De Vita, Chem. Phys. Chem. , 6 , 1731 (2005). A
Novel Quantum/Classical Hybrid Simulation Technique.
267. G. Moras, G. Cs ´nyi, M. C. Payne, and A. De Vita, Physica B , 376-377 , 936 (2006). A Novel
Molecular Dynamics Approach to Large Semiconductor Systems.
268. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R. K. Kalia, Comput.
Phys. Commun. , 138 , 143 (2001). Hybrid Finite-Element Simulations on Parallel Computers.
269. S. Ogata, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun. ,
149 , 30 (2002). Hybrid QuantumMechanical/Molecular Dynamics Simulations for Parallel
Computers: Density Functional Theory on Real-Space Multigrids.
270. A. Nakano, M. E. Bachlechner, R. K. Kalia, E. Lidorikis, P. Vashishta, G. Z. Voyiadjis, T. J.
Campbell, S. Ogata, and F. Shimojo, Comput. Sci. Eng. 3 , 56 (2001). Multiscale Simulation
of Nanosystems.
271. M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Phys.
Chem. , 100 , 19357 (1996). ONIOM: A Multilayered Integrated MO
MM Method for
Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder
Reactions and Pt(P(t-Bu) 3 ) 2 þ H 2 Oxidative Addition.
272. U. Eichler, C. M. K ¨ lmel, and J. Sauer, J. Comput. Chem. , 18 , 463 (1996). Combining Ab
Initio Techniques with Analytical Potential Functions for Structure Predictions of Large
Systems: Method and Application to Crystalline Silica Polymorphs.
273. U. C. Singh and P. A. Kollman, J. Comput. Chem. , 7 , 718 (1986). A Combined Ab Initio
Quantum Mechanical and Molecular Mechanical Method for Carrying Out Simulations on
Complex Molecular Systems.
þ
Search WWH ::




Custom Search