Chemistry Reference
In-Depth Information
23. M. Kato, A. V. Pisliakov, and A. Warshel, Proteins: Struct. , Funct. , Bioinform. , 64 , 829-844
(2006). The Barrier for Proton Transport in Aquaporins as a Challenge for Electrostatic
Models: The Role of Protein Relaxation in Mutational Calculations.
24. A. Burykin and A. Warshel, Biophys. J. , 85 , 3696-3706 (2003). What Really Prevents Proton
Transport through Aquaporin? Charge Self-Energy versus Proton Wire Proposals.
25. S. Braun-Sand, A. Burykin, Z. T. Chu, and A. Warshel, J. Phys. Chem. B , 109 , 583-592
(2005). Realistic Simulations of Proton Transport along the Gramicidin Channel: Demon-
strating the Importance of Solvation Effects.
26. M. Kato, A. V. Pisliakov, and A. Warshel, Proteins: Struct. , Funct. , Bioinform. , 64 , 829-844
(2006). The Barrier for Proton Transport in Aquaporins as a Challenge for Electrostatic
Models: The Role of Protein Relaxation in Mutational Calculations.
27. S. H. Chung, O. S. Anderson and V. Krishnamurthy, Eds., Biological Membrane Ion Channels:
Dynamics , Structure , and Applications , Springer, New York, 2007.
28. D. A. Doyle, J. Morais Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait,
and R. MacKinnon, Science , 280 , 69-77 (1998). The Structure of the Potassium Channel:
Molecular Basis of K þ Conduction and Selectivity.
29. M. Maduke, C. Miller, and J. A. Mindell, Annu. Rev. Biophys. Biomol. Struct. , 29 , 411-438
(2000). A Decade of CLC Chloride Channels: Structure, Mechanism, and Many Unsettled
Questions.
30. A. Accardi and C. Miller, Nature , 427 , 803-807 (2004). Secondary Active Transport
Mediated by a Prokaryotic Homologue of ClC Cl-Channels.
31. A. Accardi, S. Lobet, C. Williams, C. Miller, and R. Dutzler, J. Mol. Biol. , 362 , 691-699
(2006). Synergism between Halide Binding and Proton Transport
in a CLC-type
Exchanger.
32. C. Miller, Nature , 440 , 484-489 (2006). ClC Chloride Channels Viewed through a Trans-
porter Lens.
33. O. Scheel, A. A. Zdebik, S. Lourdel, and T. J. Jentsch, Nature , 436 , 424-427 (2005). Voltage-
Dependent Electrogenic Chloride/Proton Exchange by Endosomal CLC Proteins.
34. A. Picollo andM. Pusch, Nature , 436 , 420-423 (2005). Chloride/Proton Antiporter Activity of
Mammalian CLC Proteins ClC-4 and ClC-5.
35. A. De Angeli, D. Monachello, G. Ephritikhine, J. M. Frachisse, S. Thomine, F. Gambale, and
H. Barbier-Brygoo, Nature , 442 , 939-942 (2006). The Nitrate/Proton Antiporter AtCLCa
Mediates Nitrate Accumulation in Plant Vacuoles.
36. A. Accardi, M. Walden, W. Nguitragool, H. Jayaram, C. Williams, and C. Miller, J. Gen.
Physiol. , 126 , 563-570 (2005). Separate Ion Pathways in a Cl =
H þ Exchanger.
37. M. Pusch, U. Ludewig, A. Rehfeldt, and T. J. Jentsch, Nature , 373 , 527-531 (1995). Gating of
the Voltage-Dependent Chloride Channel CIC-0 by the Permeant Anion.
38. G. A. Voth, Acc. Chem. Res. , 39 , 143-150 (2006). Computer Simulation of Proton Solvation
and Transport in Aqueous and Biomolecular Systems.
39. W. Kunz, P. Lo Nostro, and B. W. Ninham, Curr. Opin. Coll. Interface Sci. , 9 , 1-18 (2004).
The Present State of Affairs with Hofmeister Effects.
40. P. Jungwirth, B. J. Finlayson-Pitts, and D. J. Tobias, Chem. Rev. , 106 , 1137-1139 (2006).
Introduction: Structure and Chemistry at Aqueous Interfaces.
41. H. I. Petrache, I. Kimchi, D. Harries, and V. A. Parsegian, J. Am. Chem. Soc. , 127 , 11546-
11547 (2005). Measured Depletion of Ions at the Biomembrane Interface.
42. P. Jungwirth and D. J. Tobias, Chem. Rev. , 106 , 1259-1281 (2006). Specific Ion Effects at the
Air/Water Interface.
43. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B , 6324 , 245407 (2001). Ab Initio Modeling of
Quantum Transport Properties of Molecular Electronic Devices.
44. M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B , 65 , 165401
(2002). Density-Functional Method for Nonequilibrium Electron Transport.
Search WWH ::




Custom Search