Chemistry Reference
In-Depth Information
45. K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejon, Comput. Mat. Sci. , 27 ,
151-160 (2003). Theoretical Study of the Nonlinear Conductance of Di-thiol Benzene
Coupled to Au(111) Surfaces via Thiol and Thiolate Bonds.
46. Y. Q. Xue andM. A. Ratner, Phys. Rev. B , 68 , 115406 (2003). Microscopic Study of Electrical
Transport through Individual Molecules with Metallic Contacts. I. Band Lineup, Voltage
Drop, and High-Field Transport.
47. G. G. Feng, N. Wijesekera, and T. L. Beck, IEEE Trans. Nanotech. , 6 , 238-244 (2007). Real-
Space Multigrid Method for Linear-Response Quantum Transport in Molecular Electronic
Devices.
48. M. B. Nardelli, J. L. Fattebert, and J. Bernholc, Phys. Rev. B , 64 , 245423 (2001). O(N) Real-
Space Method for Ab Initio Quantum Transport Calculations: Application to Carbon
Nanotube-Metal Contacts.
49. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science , 278 , 252-254 (1997).
Conductance of a Molecular Junction.
50. P. Elliott, F. Furche, and K. Burke, in Reviews in Computational Chemistry , K. B. Lipkowitz
and T. R. Cundari, Eds., Wiley, Hoboken, NJ, 2009, Vol. 26, pp. 91-165. Excited States
from Time-Dependent Density Functional Theory.
51. S. Datta, Electronic Transport in Mesoscopic Systems , Cambridge University Press, Cam-
bridge, UK, 1995.
52. J. B. Anderson, in Reviews in Computational Chemistry , K. B. Lipkowitz and D. B. Boyd, Eds.,
Wiley-VCH, New York, 1999, Vol. 13, pp. 133-182. Quantum Monte Carlo: Atoms,
Molecules, Clusters, Liquids, and Solids.
53. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory , 1st, rev. ed., McGraw-Hill, New York, 1989.
54. N. R. Kestner and J. E. Combariza, in Reviews in Computational Chemistry , K. B. Lipkowitz
and D. B. Boyd, Eds., Wiley-VCH, New York, 1999, Vol. 13, pp. 99-132. Basis Set
Superposition Errors: Theory and Practice. See also I. N. Levine, Quantum Chemistry ,
5th ed., Prentice-Hall, Upper Saddle River, NJ, 2000.
55. R. M. Martin, Electronic Structure: Basic Theory and Practical Methods , Cambridge Uni-
versity Press, Cambridge, UK, 2004.
56. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. ,
64 , 1045-1097 (1992). Iterative Minimization Techniques for Ab Initio Total-Energy
Calculations—Molecular-Dynamics and Conjugate Gradients.
57. G. Kresse and J. Furthmuller, Phys. Rev. B , 54 , 11169-11186 (1996). Efficient Iterative
Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set.
58. T. L. Beck, Rev. Mod. Phys. , 72 , 1041-1080 (2000). Real-Space Mesh Techniques in Density-
Functional Theory.
59. J. R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. , 72 , 1240-1243 (1994). Finite-
Difference-Pseudopotential Method—Electronic-Structure Calculations without a Basis.
60. E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B , 54 , 14362-14375 (1996). Real-Space
Multigrid-Based Approach to Large-Scale Electronic Structure Calculations.
61. E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B , 52 , R5471-R5474 (1995). Large-
Scale Electronic-Structure Calculations with Multigrid Acceleration.
62. J. E. Pask and P. A. Sterne, Model. Simul. Mater. Sci. Eng. , 13 , R71-R96 (2005). Finite
Element Methods in Ab Initio Electronic Structure Calculations.
63. S. R. White, J. W. Wilkins, and M. P. Teter, Phys. Rev. B , 39 , 5819-5833 (1989). Finite-
Element Method for Electronic-Structure.
64. J. L. Fattebert, R. D. Hornung, and A. M. Wissink, J. Comput. Phys. , 223 , 759-773 (2007).
Finite Element Approach for Density Functional Theory Calculations on Locally-Refined
Meshes.
65. L. R. Ramdas Ram-Mohan, Finite Element and Boundary Element Applications in Quantum
Mechanics , Oxford, University Press, Oxford, UK, 2002.
Search WWH ::




Custom Search