Chemistry Reference
In-Depth Information
REFERENCES
1. B. Hille, Ion Channels of Excitable Membranes , Sinauer Associates, Sunderland, 2001.
2. W. D. Stein, Channels , Carriers , and Pumps: An Introduction to Membrane Transport ,
Academic, New York, 1990.
3. F. M. Ashcroft, Ion Channels and Disease , Academic, New York, 2000.
4. M. Saraniti, S. Aboud, and R. Eisenberg, in Reviews in Computational Chemistry ,K.B.
Lipkowitz, T. R. Cundari, and V. J. Gillet, Eds., Wiley, Hoboken, NJ, 2006, Vol. 22, pp.
229-293. The Simulation of Ionic Charge Transport in Biological Ion Channels: An
Introduction to Numerical Methods.
5. T. J. Jentsch, I. Neagoe, and O. Scheel, Curr. Opin. Neurobiol. , 15 , 319-325 (2005). CLC
Chloride Channels and Transporters.
6. M. Pusch, G. Zifarelli, A. R. Murgia, A. Picollo, and E. Babini, Exp. Physiol. , 91 , 149-152
(2006). Channel or Transporter? The CLC Saga Continues.
7. R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. MacKinnon, Nature , 415 , 287-
294 (2002). X-ray Structure of a ClC Chloride Channel at 3.0 Angstrom Reveals the
Molecular Basis of Anion Selectivity.
8. R. Dutzler, E. B. Campbell, and R. MacKinnon, Science , 300 , 108-112 (2003). Gating the
Selectivity Filter in ClC Chloride Channels.
9. J. Yin, Z. Kuang, U. Mahankali, and T. L. Beck, Proteins: Struct. , Func. , Bioinform. , 57 , 414-
421 (2004). Ion Transit Pathways and Gating in ClC Chloride Channels.
10. O. Moran, S. Traverso, L. Elia, and M. Pusch, Biochemistry , 42 , 5176-5185 (2003).
Molecular Modeling of p -Chlorophenoxyacetic Acid Binding to the CLC-0 Channel.
11. B. Corry, M. O'Mara, and S. H. Chung, Biophys. J. , 86 , 846-860 (2004). Conduction
Mechanisms of Chloride Ions in ClC-type Channels.
12. D. Bisset, B. Corry, and S. H. Chung, Biophys. J. , 89 , 179-186 (2005). The Fast Gating
Mechanism in ClC-0 Channels.
13. J. Cohen and K. Schulten, Biophys. J. , 86 , 836-845 (2004). Mechanismof Anionic Conduction
Across ClC.
14. F. L. Gervasio, M. Parrinello, M. Ceccarelli, and M. L. Klein, J. Mol. Biol. , 361 , 390-398
(2006). Exploring the Gating Mechanism in the ClC Chloride Channel via Metadynamics.
15. D. L. Bostick and M. L. Berkowitz, Biophys. J. , 87 , 1686-1696 (2004). Exterior Site
Occupancy Infers Chloride-Induced Proton Gating in a Prokaryotic Homolog of the ClC
Chloride Channel.
16. G. V. Miloshevsky and P. C. Jordan, Biophys. J. , 86 , 825-835 (2004). Anion Pathway and
Potential Energy Profiles Along Curvilinear Bacterial ClC Cl
Pores: Electrostatic Effects of
Charged Residues.
17. Z. Kuang, U. Mahankali, and T. L. Beck, Proteins: Struct. , Funct. , Bioinform. , 68 , 26-33
(2007). Proton Pathways and H รพ /Cl Stoichiometry in Bacterial Chloride Transporters.
18. M. H. Cheng, A. B. Mamonov, J. W. Dukes, and R. D. Coalson, J. Phys. Chem. B , 111 , 5956-
5965 (2007). Modeling the Fast Gating Mechanism in the ClC-0 Chloride Channel.
19. B. Roux, T. Allen, S. Berneche, and W. Im, Quart. Rev. Biophys. , 37 , 15-103 (2004).
Theoretical and Computational Models of Biological Ion Channels.
20. R. D. Coalson and M. G. Kurnikova, IEEE Trans. Nanobiosci. , 4 , 81-93 (2005). Poisson-
Nernst-Planck Theory Approach to the Calculation of Current through Biological Ion
Channels.
21. A. Warshel, Proc. Natl. Acad. Sci. U.S.A. , 102 , 1813-1814 (2005). Inverting the Selectivity of
Aquaporin 6: Gating versus Direct Electrostatic Interaction.
22. A. Burykin and A. Warshel, FEBS Lett. , 570 , 41-46 (2004). On the Origin of the Electrostatic
Barrier for Proton Transport in Aquaporin.
Search WWH ::




Custom Search