Chemistry Reference
In-Depth Information
[4] Lundberg, KS, Shoemaker, DD, Adams, MW, Short, JM, Sorge, JA, Mathur, EJ (1991) High-
fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus fu-
riosus. Gene 108(1): 1-6.
[5] Higuchi, R, Fockler, C, Dollinger, G, Watson, R (1993) Kinetic PCR analysis: real-time mo-
nitoring of DNA amplification reactions. Biotechnol 11: 1026-30.
[6] Mackay, IM, Mackay, JF, Nissen, MD, Sloots, TP (2007) real-time PCR: History and Fluo-
rogenic Chemistries in real-time PCR in Microbiology: From Diagnosis to Characterisation.
Mackay, IM (Hrsg.), 1. Aufl., Caister Academic Press.
[7] Wittwer, CT, Herrmann, MG, Moss, AA, Rasmussen, RP (1997) Continuous fluorescence
monitoring of rapid cycle DNA amplification. Biotechniques 22: 130-1, 134-8.
[8] Bustin, SA, Nolan, T (2004) Chemistries. In A-Z of Quantitative PCR. Bustin, S (Hrsg.), 1.
Aufl. Int University Line.
[9] Holland, PM, Abramson, RD, Watson, R, Gelfand, DH (1991) Detection of specific polyme-
rase chain reaction product by utilizing the 5′--3′ exonuclease activity of Thermus aquaticus
DNA polymerase. Proc Natl Acad Sci USA 88(16): 7276-80.
[10] Thelwell, N, Millington, S, Solinas, A, Booth, J, Brown, T (2000) Mode of action and appli-
cation of Scorpion primers to mutation detection. Nucleic Acids Res 28: 3752-61.
[11] Afonina, I, Zivarts, M, Kutyavin, I, Lukhtanov, E, Gamper, H, Meyer, RB (1997) Efficient
priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic
Acids Res 25: 2657-60.
[12] Kutyavin, IV, Afonina, IA, Mills, A, Gorn, VV, Lukhtanov, EA, Belousov, ES, Singer, MJ,
Walburger, DK, Lokhov, SG, Gall, AA, Dempcy, R, Reed, MW, Meyer, RB, Hedgpeth, J
(2000) 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension
temperatures. Nucleic Acids Res 28: 655-61.
[13] Levin, JD, Fiala, D, Samala, MF, Kahn, JD, Peterson, RJ (2006) Position-dependent effects
of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Res
34: 142.
[14] Karkare, S, Bhatnagar, D (2006) Promising nucleic acid analogs and mimics: characteristic
features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol 71:
575-86.
[15] Buh Gasparic, M, Cankar, K, Zel, J, Gruden, K (2008) Comparison of different real-time
PCR chemistries and their suitability for detection and quantification of genetically modified
organisms. BMC Biotechnol 8: 26.
[16] Reynisson, E, Josefsen, MH, Krause, M, Hoorfar, J (2006) Evaluation of probe chemistries and
platforms to improve the detection limit of real-time PCR. J Microbiol Methods 66: 206-16.
[17] Petersen, M, Wengel, J (2003) LNA: a versatile tool for therapeutics and genomics. Trends
Biotechnol 21: 74-81.
[18] Logan, J, Edwards, K, Saunders, N (Hrsg.) (2009) real-time PCR: Current Technology and
Applications, 1. Aufl. Caister Academic Press.
[19] Apfalter, P, Reischl, U, Hammerschlag, MR (2005) In-house nucleic acid amplification as-
says in research: how much quality control is needed before one can rely upon the results? J
Clin Microbiol 43: 5835-41.
[20] Roth, A, Mauch, H, Göbel, UB (2001) Nukleinsäureamplifikationstechniken in MiQ 01
Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik, Urban & Fischer,
München.
[21] Hoorfar, J, Malorny, B, Abdulmawjood, A, Cook, N, Wagner, M, Fach, P (2004) Practical
considerations in design of internal amplification controls for diagnostic PCR assays. J Clin
Microbiol 42: 1863-8.
[22] Anderson, A, Pietsch, K, Zucker, R, Mayr, A, Müller-Hohe, E, Messelhäußer, U, Sing, A,
Busch, U, Huber, I (2010) Validation of a duplex-PCR for the detection of Salmonella spp in
different food products. Food Analytical Methods, DOI 10.1007/s12161-010-9142-8.
[23] Hoffmann, B, Depner, K, Schirrmeier, H, Beer, M (2006) A universal heterologous internal
control system for duplex real-time RT-PCR assays used in a detection system for pestiviru-
ses. J Virol Methods 136: 200-9.
Search WWH ::




Custom Search