Environmental Engineering Reference
In-Depth Information
74. Navid A, Pilon L (2011) Pyroelectric energy harvesting using Olsen cycles in puri ed and
porous poly (vinylidene fluoride-trifluoroethylene)[P (VDF-TrFE)] thin lms. Smart Mater
Struct 20(2):025012
75. Olsen RB, Brown DD (1982) High efcieincy direct conversion of heat to electrical energy-
related pyroelectric measurements. Ferroelectrics 40(1):17 - 27
76. Lee F (2012) Experimental and analytical studies on pyroelectric waste heat energy
conversion. Master Thesis, UCLA
77. Sebald G, Pruvost S, Guyomar D (2008) Energy harvesting based on Ericsson pyroelectric
cycles in a relaxor ferroelectric ceramic. Smart Mater Struct 17(1):015012
78. Khodayari A, Pruvost S, Sebald G et al (2009) Nonlinear pyroelectric energy harvesting from
relaxor single crystals. IEEE Trans Ultrason Ferroelectr Freq Control. 56(4):693
699
79. Kandilian R, Navid A, Pilon L (2011) The pyroelectric energy harvesting capabilities of
PMN
-
PT near the morphotropic phase boundary. Smart Mater Struct 20(5):055020
80. Cha G, Ju YS (2013) Pyroelectric energy harvesting using liquid-based switchable thermal
interfaces. Sens Actuators, A 189:100
-
107
81. Olsen RB, Bruno DA, Briscoe JM et al (1985) Pyroelectric conversion cycle of vinylidene
fluoride-trifluoroethylene copolymer. J Appl Phys 57(11):5036 - 5042
82. de Oliveira NA, von Ranke PJ, Troper A (2014) Magnetocaloric and barocaloric effects:
Theoretical description and trends. Int J Refrig 37:237 - 248
83. Zou JD (2012) Magnetocaloric and barocaloric effects in a Gd 5 Si 2 Ge 2 compound. Chin Phys
B 21(3):037503
84. Str ä ssle T, Furrer A, Lacorre P et al (2000) A novel principle for cooling by adiabatic
pressure application in rare-earth compounds. J Alloys Compd 303
-
304:228
231
-
-
85. Str
ssle T, Furrer A, Altorfer F et al (2001) HoAs: a model compound for the cooling by the
barocaloric effect. J Alloys Compd 323
ä
324:392
395
-
-
86. Furrer A, Str
ssle T, Temprano DR (2001) New excitement with crystal-eld excitations.
J Alloys Compd 323
ä
324:649
653
-
-
87. Str
nni A et al (2002) Barocaloric effect: the use of pressure for magnetic
cooling in Ce 3 Pd 20 Ge 6 . J Appl Phys 91(10):8543
88. Hossain Z, Str
ä
ssle T, Furrer A, D
ö
ssle T, Geibel C et al (2004) First-order valence transition and barocaloric
effect in EuNi 2 (Si 1 x Ge x ) 2 . J Magn Magn Mater 272
ä
276(3):2352
2354
-
-
89. Ma
osa L, Gonzalez-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in
the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9(6):478 - 481
90. De Oliveira NA (2011) Barocaloric effect and the pressure induced solid state refrigerator.
J Appl Phys 109(5):053515
91. Otsuka K (1998) Shape memory materials, C.M. Wayman (ed). Cambridge University Press,
Cambridge
92. Shaw JA, Churchill CB, Iadicola MA (2008) Tips and tricks for characterizing shape
memory alloy wire: Part 1 - differential scanning calorimetry and basic phenomena. Exp Tech
32(5):55
ñ
62
93. Jani JM, Leary M, Subic A et al (2014) A review of shape memory alloy research,
applications and opportunities. Mater Design 56:1078
-
1113
94. Wakjira JF (2011) The VT1 shape memory alloy heat engine design. Master Thesis, Virginia
Polytechnic Institute and State University
95. Salzbrenner R (1984) Shape memory heat engines. J Mater Sci 19:1827
-
1835
96. McCormick PG (1986) Shape memory effect heat engine performance. Appl Energy
24:221
-
243
97. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater
Chem 17:1543
-
1558
98. Ortin J, Planes A (1989) Thermodynamics of thermoelastic martensitic transformation. Acta
Metall 37(5):1433 - 1441
99. Moya X, Kar-Narayan S, Mathur ND (2014) Caloric materials near ferroic phase transitions.
Nat Mater 13:439 - 450
-
Search WWH ::




Custom Search