Environmental Engineering Reference
In-Depth Information
50. Epstein RI, Malloy KJ (2009) Electrocaloric devices based on thin- lm heat switches. J Appl
Phys 106(6):064509
51. Karmanenko SF, Pakhomov OV, Prudan AM et al (2007) Layered ceramic structure based
on the electrocaloric elements working as a solid state cooling line. J Eur Ceram Soc 27
(8):3109 - 3112
52. Es
kov A, Karmanenko S, Pakhomov O et al (2009) Simulation of a solid-state cooler with
electrocaloric elements. Phys Solid State 51(8):1574
'
1577
53. Jia Y, Ju YS (2012) A solid-state refrigerator based on the electrocaloric effect. Appl Phys
Lett 100(24):242901
54. Gu H, Qian X, Li X et al (2013) A chip scale electrocaloric effect based cooling device. Appl
Phys Lett 102(12):122904
55. Chukka R, Shannigrahi S, Chen L (2012) Investigations of cooling ef ciencies in solid-state
electrocaloric device. Integr Ferroelectr 133(1):3
-
8
-
56. Plaznik U, Kitanovski A, Mali
B et al (2014) Small scale electrocaloric cooling device with
an active heat regenerator. In: Abstracts of the 6th IIF-IIR international conference on
magnetic refrigeration, Victoria, 7 - 10 Sept 2014
57. Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today
58(8):31 - 36
58. Lang SB (2004) A 2,400 year history of pyroelectricity: from ancient Greece to exploration
of the solar system. Br Ceram Trans 103(2):65 - 70
59. Olsen RB (1982) Ferroelectric conversion of heat to electrical energy a demonstration.
J Energy 6(2):91 - 95
60. Kouchachvili L,
č
Ikura M (2007) Pyroelectric conversion-effects of P (VDF
TrFE)
-
188
61. Lee FY, Jo HR, Lynch CS et al (2013) Pyroelectric energy conversion using PLZT ceramics
and the ferroelectric
preconditioning on power conversion. J Electrostat 65(3):182
-
ergodic relaxor phase transition. Smart Mater Struct 22(2):025038
62. Nguyen H, Navid A, Pilon L (2010) Pyroelectric energy converter using co-polymer P
(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Appl Therm Eng 30
(14):2127
-
2137
63. Mane P, Xie J, Leang KK et al (2011) Cyclic energy harvesting from pyroelectric materials.
IEEE Trans Ultrason Ferroelectr Freq Control 58(1):10
-
17
64. Kumar P, Sharma S, Thakur OP et al (2004) Dielectric, piezoelectric and pyroelectric
properties of PMN
-
589
65. Cuadras A, Gasulla M, Ferrari V (2010) Thermal energy harvesting through pyroelectricity.
Sens Actuators, A 158(1):132 - 139
66. Navid A, Lynch CS, Pilon L (2010) Puri ed and porous poly (vinylidene fluoride-
trifluoroethylene) thin lms for pyroelectric infrared sensing and energy harvesting. Smart
Mater Struct 19(5):055006
67. Olsen RB, Briscoe JM, Bruno DA et al (1981) A pyroelectric energy converter which
employs regeneration. Ferroelectrics 38(1):975 - 978
68. Zhang Q, Agbossou A, Feng Z et al (2011) Solar micro-energy harvesting with pyroelectric
effect and wind
-
PT (68:32) system. Ceram Int 30(4):585
-
342
69. Ravindran SKT, Huesgen T, Kroener M et al (2011) A self-sustaining pyroelectric energy
harvester utilizing spatial thermal gradients. In: 2011 16th international solid-state sensors,
actuators and microsystems conference (TRANSDUCERS)
70. Ravindran SKT, Kroener M, Woias P (2012) A bimetallic micro heat engine for pyroelectric
energy conversion. Procedia Eng 47:33
fl
ow. Sens Actuators, A 168(2):335
-
36
71. Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric energy conversion: optimization
principles. IEEE Trans Ultrason Ferroelectr Freq Control 55(3):538
-
551
72. McKinley IM, Kandilian R, Pilon L (2012) Waste heat energy harvesting using the Olsen
cycle on 0.945Pb(Zn 1/3 Nb 2/3 )O 3 - 0.055PbTiO 3 single crystals. Smart Mater Struct 21
(3):035015
73. Lee FY, Goljahi S, McKinley IM et al (2012) Pyroelectric waste heat energy harvesting using
relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle. Smart Mater Struct 21(2):025021
-
Search WWH ::




Custom Search