Environmental Engineering Reference
In-Depth Information
26. Kar-Narayan S, Crossley S, Moya X et al (2013) Direct electrocaloric measurements of a
multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl Phys
Lett 102(3):032903
27. Kar-Narayan S, Mathur N (2009) Predicted cooling powers for multilayer capacitors based
on various electrocaloric and electrode materials. Appl Phys Lett 95(24):242903
28. Shebanovs L, Borman K, Lawless W et al (2002) Electrocaloric effect in some perovskite
ferroelectric ceramics and multilayer capacitors. Ferroelectrics 273(1):137
142
-
29. Ro
H et al (2012) The giant electrocaloric effect in inorganic and
organic ferroelectric relaxor systems. Ferroelectrics 430(1):98
ž
i
č
B, Mali
č
B, Ur
š
i
č
102
30. Peng B, Fan H, Zhang Q (2013) A giant electrocaloric effect in nanoscale antiferroelectric
and ferroelectric phases coexisting in a relaxor Pb 0.8 Ba 0.2 ZrO 3 thin lm at room temperature.
Adv Funct Mater 23(23):2987
-
2992
-
31. Lu S, Ro
B, Zhang Q et al (2010) Organic and inorganic relaxor ferroelectrics with giant
electrocaloric effect. Appl Phys Lett 97:162904
32. Saranya D, Chaudhuri A, Parui J et al (2009) Electrocaloric effect of PMN-PT thin lms near
morphotropic phase boundary. Bull Mater Sci 32(3):259 - 262
33. Mischenko A, Zhang Q, Whatmore R et al (2006) Giant electrocaloric effect in the thin lm
relaxor ferroelectric 0.9PbMg 1/3 Nb 2/3 O 3 -0.1PbTiO 3 near room temperature. Appl Phys Lett
89(24):242912
34. Correia TM, Young JS, Whatmore RW et al (2009) Investigation of the electrocaloric effect
in a PbMg 2/3 Nb 1/3 O 3 -PbTi0 3 relaxor thin lm. Appl Phys Lett 95(18):182904
35. Correia T, Kar-Narayan S, Young J et al (2011) PST thin lms for electrocaloric coolers.
J Phys D Appl Phys 44(16):165407
36. Parui J, Krupanidhi SB (2008) Electrocaloric effect in antiferroelectric PbZrO 3 thin lms.
Phys Status Solidi (RRL)
ž
i
č
Rapid Res Lett 2(5):230
232
-
-
37. Tu
ek J, Kitanovski A, Zupan S et al (2013) A comprehensive experimental analysis of
gadolinium active magnetic regenerators. Appl Therm Eng 53(1):57
š
66
38. Li X, Qian X-S, Haiming G et al (2012) Giant electrocaloric effect in ferroelectric poly
(vinylidene
-
uoroethylene) copolymers near a rst-order ferroelectric transition.
Appl Phys Lett 101(13):132903
39. Lu SG, Ro
fl
uoride-tri
fl
ž
i
č
B, Zhang QM et al (2011) Enhanced electrocaloric effect in ferroelectric poly
uoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric
transition. Appl Phys Lett 98(12):122906
40. Liu P, Wang J, Meng X et al (2010) Huge electrocaloric effect in Langmuir-Blodgett
ferroelectric polymer thin lms. New J Phys 12(2):023035
41. Neese B, Lu SG, Chu B et al (2009) Electrocaloric effect of the relaxor ferroelectric poly
(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl Phys Lett 94
(4):042910
42. Chen X-Z, Li X, Qian X-S et al (2013) A polymer blend approach to tailor the ferroelectric
responses in P(VDF
(vinylidene-
fl
uoride/tri
fl
2381
43. Barclay JA, Steyert WA (1982) Active magnetic regenerator. US Patent No. 4.332.135
44. Yu B, Liu M, Egolf PW et al (2010) A review of magnetic refrigerator and heat pump
prototypes built before the year 2010. Int J Refrig 33(6):1029
TrFE) based copolymers. Polymer 54(9):2373
-
-
1060
45. Sinyavsky Y, Brodyansky V (1992) Experimental testing of electrocaloric cooling with
transparent ferroelectric ceramic as a working body. Ferroelectrics 131(1):321
-
325
-
46. Tomc U, Kitanovski A, O
bolt M et al (2013) Method for electrocaloric energy conversion.
Patent Application P003397EP
47. O
ž
ž
bolt M, Kitanovski A, Tu
š
ek J et al (2014) Electrocaloric vs. magnetocaloric energy
27
48. Guo D, Gao J, Yu Y-J et al (2014) Design and modeling of a
conversion. Int J Refrig 37:16
-
uid-based micro-scale
electrocaloric refrigeration system. Int J Heat Mass Transfer 72:559 - 564
49. Gu H, Craven B, Qian X et al (2013) Simulation of chip-size electrocaloric refrigerator with
high cooling-power density. Appl Phys Lett 102(11):112901
fl
Search WWH ::




Custom Search