Environmental Engineering Reference
In-Depth Information
100. Rodriguez C, Brown LC (1980) The thermal effect due to stress-induced martensite
formation in ʲ -CuAINi single crystals. Metall Trans A 11A:147 - 150
101. Brown LC (1981) The thermal effect in pseudoelastic single crystals of ʲ - CuZnSn. Metall
Trans A 12A:1491 - 1494
102. Mukherjee K, Sircar S, Dahotre NB (1985) Thermal effects associated with stress-induced
martensitic transformation in a Ti-Ni alloy. Mater Sci Eng 74:75
84
103. McCormick PG, Liu Y, Miyazaki S (1993) Intrinsic thermal-mechanical behaviour
associated with the stress induced martensitic transformation in NiTi. Mater Sci Eng, A
167:51
-
56
104. Nikitin SA, Myalikgulyev G, Annaorazov MP et al (1992) Giant elastocaloric effect in FeRh
alloy. Phys Lett A 171:234
-
236
105. Manosa L, Jarque-Farnos S, Vives E et al (2013) Large temperature span and giant
refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys. Appl Phys Lett
103:211904
106. Bonnot E, Romero R, Manosa L et al (2008) Elastocaloric effect associated with the
martensitic transition in shape-memory alloys. Phys Rev Lett 100:125901
107. Vives E, Burrows S, Edwards RS et al (2011) Temperature contour maps at the strain-
induced martensitic transition of a Cu - Zn - Al shape-memory single crystal. Appl Phys Lett
98:011902
108. Cui J, Wu Y, Muehlbauer J et al (2012) Demonstration of high ef ciency elastocaloric
cooling with large Δ T using NiTi wires. Appl Phys Lett 101:073904
109. Ossmer H, Chluba C, Krevet B et al (2013) Elastocaloric cooling using shape memory alloy
lms. J Phys: Conf Ser 476:012138
110. Bechtold C, Chluba C, Lima de Miranda R (2012) High cyclic stability of the elastocaloric
effect in sputtered TiNiCu shape memory lms. Appl Phys Lett 101:091903
111. Xiao F, Fukuda T, Kakeshita T (2013) Signicant elastocaloric effect in a Fe-31.2Pd (at. %)
single crystal. Appl Phys Lett 102:161914
112. Guyomar D, Li Y, Sebald G et al (2013) Elastocaloric modeling of natural rubber. Appl
Therm Eng 57:33
-
38
113. Churchill CB, Shaw JA, Iadicola MA (2010) Tips and tricks for characterizing shape
memory alloy: Part 4
-
80
114. Pieczyska E (2010) Activity of stress-induced martensite transformation in TiNi shape
memory alloy studied by infrared technique. J Mod Opt 57(18):1700
thermo-mechanical coupling. Exp Tech 34(2):63
-
-
1707
115. DeGregoria AJ (1994) Elastomer bed. International Patent WO 94/10517
116. Fischer SK, Tomlinson JJ, Hughes PJ (1994) Energy and global warming impacts of not-in-
kind and next generation CFC and HCFC alternatives. Oak Ridge National Laboratory,
AFEAS and US Department for Energy
117. Cui J, Takeuchi I, Wuttig M et al (2012) Thermoelastic cooling. US Patent Application
Publication US 2012/0273158 A1
118. Goetzler W, Zogg R, Young J et al (2014) Energy savings potential and RD&D opportunities
for non-vapor-compression HVAC technologies. Navigant Consulting Inc., prepared for U.S.
Department of Energy
119. Chluba C, Lima-de-Miranda R, Kienle L et al (2014) On the role of precipitates for the
functional fatigue in TiNiCu lms. In: International conference on martensitic transformation
(ICOMAT), 2014, Oral presentation
-
Search WWH ::




Custom Search