Biomedical Engineering Reference
In-Depth Information
Murshed, S. M. S., Leong, K.C. and Yang, C. (2009), A combined model for the
effective thermal conductivity of nanofluids, Appl. Therm. Eng., Vol. 29,
pp. 2477-2483.
Nan, C.-W., Liu, G., Lin, Y. and Li, M. (2004), Interface effect on thermal
conductivity of carbon nanotube composites, Appl. Phys. Lett., Vol. 85,
pp. 3549-3551.
Oh, D.-W., Jain, A., Eaton, J. K., Goodson, K. E. and Lee, J. S. (2008), Thermal
conductivity measurement and sedimentation detection of aluminum oxide
nanofluids by using the 3w method, Int. J. Heat Fluid Flow, Vol. 29, pp. 1456-
1461.
Palabiyik, I., Musina, Z., Witharana, S. and Ding, Y. (2011), Dispersion stability
and thermal conductivity of propylene glycol-based nanofluids, J. Nanopart.
Res., Vol. 13, pp. 5049-5055.
Patel, H. E., Das, S. K., Sundararajan, T., Nair, A. S., George, B. and Pradeep, T.
(2003), Thermal conductivity of naked and monolayer protected metal
nanoparticle based nanofluids: manifestation of anomalous enhancement and
chemical effects, Appl. Phys. Lett., Vol. 83, pp. 2931-2933.
Patel, K., Kapoor, S., Dave, D. P. and Mukherjee, T. (2005), Synthesis of nanosized
silver colloids by microwave dielectric heating, J. Chem. Sci., Vol. 117, No. 1,
pp. 53-60.
Paul, G., Pal, T. and Manna, I. (2010), Thermo-physical property measurement of
nano-gold dispersed water based nanofluids prepared by chemical precipitation
technique, J. Colloid Interf. Sci., Vol. 349, pp. 434-437.
Paul, G., Philip, J., Raj, B., Das, P. K. and Manna, I. (2011), Synthesis,
characterization, and thermal property measurement of nano-Al95Zn0 5
dispersed nanofluid prepared by a two-step process, Int. J. Heat Mass Tran.,
Vol. 54, pp. 3783-3788.
Pen˜ as, J. R. V., de Za´ rate, J. M. O. and Khayet, M. (2008), Measurement of the
thermal conductivity of nanofluids by the multicurrent hot-wire method, J.
Appl. Phys., Vol. 104, p. 044314.
Philip, J., Shima, P. D. and Raj, B. (2007), Enhancement of thermal conductivity in
magnetite based nanofluid due to chainlike structures, Appl. Phys. Lett., Vol.
91, p. 203108.
Phuoc, T. X., Soong, Y. and Chyu, M. K. (2007), Synthesis of Ag-deionized water
nanofluids using multi-beam laser ablation in liquids, Opt. Laser. Eng., Vol. 45,
pp. 1099-1106.
Phuoc, T. X., Massoudi, M. and Chen, R.-H. (2011), Viscosity and thermal
conductivity of nanofluids containing multi-walled carbon nanotubes stabilized
by chitosan, Int. J. Therm. Sci., Vol. 50, pp. 12-18.
Prasher, R., Phelan, P. E. and Bhattacharya, P. (2006a), Effect of aggregation
kinetics on the
￿ ￿ ￿ ￿ ￿ ￿
thermal
conductivity of nanoscale
colloidal
solutions
(nanofluid), Nano Lett., Vol. 6, No. 7, pp. 1529-1534.
Prasher, R., Bhattacharya, P. and Phelan, P. E. (2006b), Brownian-motion-based
convective-conductive model for the thermal conductivity of nanofluids, Trans.
ASME, J. Heat Trans., Vol. 128, pp. 588-595.
Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P. and Keblinski, P. (2006c),
Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys.
Lett., Vol. 89, p. 143119.
Search WWH ::




Custom Search