Biomedical Engineering Reference
In-Depth Information
Putnam, S. A., Cahill, D. G., Braun, P. V., Ge, Z. and Shimmin, R. G. (2006),
Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., Vol. 99,
p. 084308.
Sankar, N., Mathew, N. and Sobhan, C.B. (2008), Molecular dynamics modeling of
thermal conductivity enhancement in metal nanoparticle suspensions, Int.
Commun. Heat Mass, Vol. 35, pp. 867-872.
Sarkar, S. and Selvam, R. P. (2007), Molecular dynamics simulation of effective
thermal conductivity and study of enhanced thermal transport mechanism in
nanofluids, J. Appl. Phys., Vol. 102, p. 074302.
Shaikh, S., Lafdi, K. and Ponnappan, R. (2007), Thermal conductivity improvement
in carbon nanoparticle doped PAO oil: An experimental study, J. Appl. Phys.,
Vol. 101, p. 064302.
Shima, P. D. and Philip, J. (2011), Tuning of thermal conductivity and rheology of
nanofluids using an external stimulus, J. Phys. Chem. C, Vol. 115, pp. 20097-
20104.
Shima, P. D., Philip, J. and Raj, B. (2009), Role of microconvection induced by
Brownian motion of nanoparticles in the enhanced thermal conductivity of
stable nanofluids, Appl. Phys. Lett., Vol. 94, p. 223101.
Singh, A. K. and Raykar, V. S. (2008), Microwave synthesis of silver nanofluids with
polyvinylpyrrolidone (PVP) and their transport properties, Colloid Polym. Sci.,
Vol. 286, pp. 1667-1673.
Singh, D., Timofeeva, E., Yu, W., Routbort, J., France, D., Smith, D. and Lopez-
Cepero, J. M. (2009), An investigation of silicon carbide-water nanofluid for
heat transfer applications, J. Appl. Phys., Vol. 105, p. 064306.
Sinha, K., Kavlicoglu, B., Liu, Y., Gordaninejad, F. and Graeve, O. A. (2009), A
comparative study of thermal behavior of iron and copper nanofluids, J. Appl.
Phys., Vol. 106, p. 064307.
Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J. F., Valos-Borja, M. A.,
Castillo´ n-Barraza, F. F. and Posada-Amarillas, A. (2005), Assessment of
growth of silver nanoparticles synthesized from an ethylene glycol-silver nitrate
polyvinylpyrrolidone solution, Physica E, Vol. 25, pp. 438-448.
Sundar, L. S. and Sharma, K. V. (2008), Thermal conductivity enhancement of
nanoparticles in distilled water, Int. J. Nanoparticles, Vol. 1, No. 1, pp. 66-77.
Tamjid, E. and Guenther, B. H. (2010), Rheology and colloidal structure of silver
nanoparticles dispersed in diethylene glycol, Powder Technol., Vol. 197, pp. 49-
53.
Tao, W., Zhong-yang, L., Shim-song G. and Ke-fa, C. (2007), Preparation of
controllable nanofluids and research on thermal conductivity, J. Zhejiang Un.
Eng. Sc., Vol. 41, No. 3, pp. 514-518.
Tillman, P. and Hill, J. M. (2006), A new model for thermal conductivity in
nanofluids, ICONN, IEEE, 673-676. Available [Online] http://ieeexplore.ieee.
org/iel5/4143299/4140639/04143487.pdf?arnumber=4143487.
Timofeeva, E. V., Routbort, J. L. and Singh, D. (2009), Particle shape effects on
thermophysical properties of alumina nanofluids, J. Appl. Phys., Vol. 106,
p. 014304.
Tsai, T.-H., Kuo, L.-S., Chen, P.-H. and Yang, C.-T. (2008), Effect of viscosity of
base fluid on thermal conductivity of nanofluids, Appl. Phys. Lett., Vol. 93,
p. 233121.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search