Biomedical Engineering Reference
In-Depth Information
transport in nanofluids: surface charge state of the particle in suspension, J.
Phys. Chem. B, Vol. 110, pp. 4323-4328.
Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S. and Choi,
C. J. (2008), Effective viscosities and thermal conductivities of aqueous
nanofluids containing low volume concentrations of Al 2 O 3 nanoparticles, Int.
J. Heat Mass Tran., Vol. 51, pp. 2651-2656.
Lee, S., Choi, S. U. S., Li, S. and Eastman, J. A. (1999), Measuring thermal
conductivity of fluids containing oxide nanoparticles, Trans. ASME, J. Heat
Trans., Vol. 121, pp. 280-289.
Li, C. H. and Peterson, G. P. (2006), Experimental investigation of temperature and
volume fraction variations on the effective thermal conductivity of nanoparticle
suspensions (nanofluids), J. Appl. Phys., Vol. 99, p. 084314.
Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W. and Li, H. (2008), Thermal
conductivity enhancement dependent pH and chemical surfactant for Cu-H 2 O
nanofluids, Thermochim. Acta, Vol. 469, pp. 98-103.
Liu, M., Lin, M., Tsai, C. Y. and Wang, C. (2006), Enhancement of thermal
conductivity with cu for nanofluids using chemical reduction method. Int. J.
Heat Mass Tran., Vol. 49, pp. 3028-3033.
Lo, C. H., Tsung, T. T., Chen, L. C., Su, C. H. and Lin, H. M. (2005a), Fabrication
of copper oxide nanofluid using submerged arc nanoparticle synthesis system
(SANSS), J. Nanopart. Res., Vol. 7, pp. 313-320.
Lo, C.-H., Tsung, T.-T. and Chen, L.-C. (2005b), Shape-controlled synthesis of Cu-
based nanofluid using submerged arc nanoparticle synthesis system (SANSS), J.
Cryst. Growth, Vol. 277, pp. 636-642.
Lo, C.-H., Tsung, T.-T. and Lin, H.-M. (2007), Preparation of silver nanofluid by the
submerged arc nanoparticle synthesis system (SANSS), J. Alloy. Comp., Vol.
434-435, pp. 659-662.
Marquis, F. D. S. and Chibante, L. P. F. (2005), Improving the heat transfer of
nanofluids and nanolubricants with carbon nanotubes, J. Miner. Met. Mater.
Soc., Vol. 57, No. 12, pp. 32-43.
Masuda, H., Ebata, A., Teramae, K. and Fishinuma, N. (1993), Alteration of
thermal conductivity and viscosity of liquid by dispersing ultra-fine particles
(dispersion of y-A1 2 O 3 ,SO 2 , and TiO 2 ultra-fine particles), Netsu Bussei, Vol. 7,
pp. 227-233.
Maxwell, J.C. (1904), A Treatise on Electricity and Magnetism, 2nd edn, Oxford
University Press, UK.
Mintsa, H. A., Roy, G., Nguyen, C. T. and Doucet, D. (2009), New temperature
dependent thermal conductivity data for water-based nanofluids, Int. J. Therm.
Sci., Vol. 48, pp. 363-371.
Mishra, A., Ram, S. and Ghosh, G. (2009), Dynamic light scattering and optical
absorption in biological nanofluids of gold nanoparticles in poly(vinyl
pyrrolidone) molecules, J. Phys. Chem. C, Vol. 113, pp. 6976-6982.
Murshed, S. M. S., Leong, K. C. and Yang, C. (2005), Enhanced thermal
conductivity of TiO 2 -water based nanofluids, Int. J. Therm. Sci., Vol. 44,
pp. 367-373.
Murshed, S. M. S., Leong, K.C. and Yang, C. (2008), Investigations of thermal
conductivity and viscosity of nanofluids, Int. J. Therm. Sci., Vol. 47, pp. 560-
568.
￿ ￿ ￿ ￿ ￿ ￿
Search WWH ::




Custom Search