Biomedical Engineering Reference
In-Depth Information
[34] A. Valentin-Opran, J. Wozney, C. Csimma, Clinical evaluation of recombinant human bone morphogenetic
protein-2, Clin. Orthop. Rel. Res. 395 (2002) 110-120.
[35] M. Geiger, R.H. Li, W. Friess, Collagen sponges for bone regeneration with rhBMP-2, Adv. Drug Deliv.
Rev. 55 (2003) 1613-1629.
[36] B.D. Boyan, C.H. Lohmann, A. Somers, et al., Potential of porous ploy-D, L-lactide- co -glycolide par-
ticles as a carrier for recombinant human bone morphogenetic protein-2 during osteoinduction in-vivo,
J. Biomed. Mater. Res. 46 (1999) 51-59.
[37] M.R. Urist, A. Lietze, E. Dawson, β-tricalcium phosphate delivery systems for bone morphogenetic protein,
Clin. Orthop. Rel. Res. 187 (1984) 277-280.
[38] N. Sito, H. Okada, H. Horiuchi, A biodegradable polymer as a cytokine delivery system for inducing bone
formation, Nat. Biotech. 19 (2001) 332-335.
[39] H. Seeherman, J.M. Wozney, Delivery of bone morphogenetics proteins for orthopedic tissue regeneration,
Cytokine Growth Factor Rev. 16 (2005) 329-345.
[40] Y. Tabata, Y. Ikada, Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels
with different biodegradabilities, Biomaterials 20 (1999) 2169-2175.
[41] M. Yamamoto, Y. Tabata, L. Hong, et al., Bone regeneration by transforming growth factor β1 released from
a biodegradable hydrogel, J. Control. Release 64 (2000) 133-142.
[42] M. Ozeki, T. Ishii, Y. Tabata, Controlled release of hepatocyte growth factor from gelatin hydrogels based
on hydrogel degradation, J. Drug Target. 9 (2001) 461-471.
[43] D. Zekorn, Modified gelatin as plasma substitutes, Bibl. Haematol 33 (1969) 30-60.
[44] Y. Tabata, Y. Ikada, Protein release from gelatin matrices, Adv. Drug Delivery Rev. 31 (1998) 287-301.
[45] Y. Tabata, Tissue regeneration based on growth factor release, Tissue Eng. 9 (2003) S5-S15.
[46] M. Yamamoto, Y. Takahashi, Y. Tabata, Controlled release by biodegradable hydrogels enhances the ectopic
bone formation of bone morphogenetic protein, Biomaterials 24 (2003) 4375-4383.
[47] Y. Takahashi, M. Yamamoto, Y. Tabata, Skull bone regeneration in non-human primates by controlled
release of bone morphogenetic protein-2, Tissue Eng. 13 (2007) 293-300.
[48] H. Hosseinkhani, M. Hosseinkhani, Y. Tabata, Enhanced angiogenesis through controlled release of
basic fibroblast growth factor from peptide amphiphile for tissue regeneration, Biomaterials 27 (2006)
5836-5844.
[49] H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, et al., Bone regeneration through controlled
release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold, J. Control. Release 117
(2007) 380-386.
[50] H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, et al., DNA nanoparticles encapsulated in 3-D tis-
sue engineered scaffold enhance osteogenic differentiation of mesenchymal stem cells, J. Biomed. Mater.
Res. A 85 (2008) 47-60.
[51] H. Hosseinkhani, M. Yamamoto, Y. Inatsugu, et al., Enhanced ectopic bone formation using a combination
of plasmid DNA impregnation into 3-D scaffold and bioreactor perfusion culture, Biomaterials 27 (2006)
1387-1398.
[52] H. Hosseinkhani, T. Azzam, H. Kobayashi, et al., Combination of 3-D tissue engineered scaffold and
non-viral gene enhance in-vitro DNA expression of mesenchymal stem cells, Biomaterials 27 (2006)
4269-4278.
[53] H. Hosseinkhani, Y. Inatsugu, Y. Hiraoka, et al., Impregnation of plasmid DNA into three-dimensional scaf-
folds and medium perfusion enhance in-vitro DNA expression of mesenchymal stem cells, Tissue Eng. 11
(2005) 1459-1475.
[54] H. Hosseinkhani, Y. Inatsugu, S. Inoue, et al., Perfusion culture enhances the osteogenic differentiation of
rat mesenchymal stem cells in collagen sponge reinforced with poly (glycolic acid) fiber, Tissue Eng. 11
(2005) 1476-1488.
Search WWH ::




Custom Search