Biomedical Engineering Reference
In-Depth Information
[10] A. Iwakura, Y. Tabata, N. Tamura, et al., Gelatin sheets incorporating basic fibroblast growth factor
enhances healing of devascularized sternum in diabetic rats, Circulation 104 (2001) 1325-1329.
[11] E.R. Edelman, E. Mathiowitz, R. Langer, Controlled and modulated release of basic fibroblast growth fac-
tor, Biomaterials 12 (1991) 619-626.
[12] J.A. Ware, M. Simons, Angiogenesis in ischemic heart disease, Nat. Med. 3 (1997) 158-164.
[13] Y. Tabata, A. Nagano, Y. Ikada, Biodegradation of hydrogel carrier incorporating fibroblast growth factor,
Tissue Eng. 5 (1995) 127-138.
[14] R.S. Rubin, A.M. Chan, D.P. Bottaro, A broad-spectrum human lung fibroblast-derived mitogen is a variant
of hepatocyte growth factor, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 415-419.
[15] J.R. Lieberman, A. Daluski, T.A. Einhorn, The role of growth factors in the repair of bone: biology and
clinical applications, J. Bone Joint Surg. Am. 84 (2002) 1032-1044.
[16] K. Fujimura, K. Bessho, K. Kusumoto, et al., Experimental studies on bone inducing activity of composites
of atelopeptide type I collagen as a carrier for ectopic osteoinduction by rhBMP-2, Biochem. Biophys. Res.
Commun. 208 (1995) 316-322.
[17] P. Guiot, P. Couvreur, Polymeric Nanospheres and Microspheres, CRC Press, Boca Raton, FL, 1986.
[18] G. Zuber, E. Dauty, M. Nothisen, et al., Towards synthetic viruses, Adv. Drug. Deliv. Rev. 52 (2001) 245-253.
[19] B. Demeneix, Z. Hassani, J.P. Behr, Towards multifunctional synthetic vectors, Curr. Gene. Ther. 4 (2004)
445-455.
[20] M. Takenaga, R. Igarashi, H. Tsuji, et al., Enhanced antitumor activity and reduced toxicity of 1,3-bis(2-
chloroethyl)-1-nitrosourea administered in lipid microspheres to tumor-bearing mice, Jpn. J. Cancer Res. 84
(1993) 1078-1085.
[21] D. Liu, A. Mori, L. Huang, Role of liposome size and RES blockade in controlling biodistribution and
tumor uptake of GM1-containing liposomes, Biochim. Biophys. Acta 1104 (1992) 95-101.
[22] D. Liu, A. Mori, L. Huang, Large liposomes containing ganglioside GM1 accumulate effectively in spleen,
Biochim. Biophys. Acta 1066 (1991) 159-165.
[23] G. Molineux, Pegylation: engineering improved biopharmaceuticals for oncology, Pharmacotherapy 23
(2003) 3S-8S.
[24] G.E. Francis, D. Fisher, C. Delgado, et al., PEGylation of cytokines and other therapeutic proteins and pep-
tides: the importance of biological optimisation of coupling techniques, Int. J. Hematol. 68 (1998) 1-18.
[25] M.J. Roberts, M.D. Bentley, J.M. Harris, Chemistry for peptide and protein PEGylation, Adv. Drug Deliv.
Rev. 54 (2002) 459-476.
[26] J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug Discov. 2 (2003)
214-221.
[27] G.Y. Wu, C.H. Wu, Evidence for targeted gene delivery to Hep G2 hepatoma cells in-vitro, Biochemistry 27
(1988) 887-892.
[28] K. Nakazono, Y. Ito, C.H. Wu, et al., Inhibition of hepatitis B virus replication by targeted pretreatment of
complexed antisense DNA in-vitro, Hepatology 23 (1996) 1297-1303.
[29] X.M. Lu, A.J. Fischman, S.L. Jyawook, et al., Antisense DNA delivery in-vivo: liver targeting by receptor-
mediated uptake, J. Nucl. Med. 35 (1994) 269-275.
[30] G.Y. Wu, C.H. Wu, Receptor-mediated gene delivery and expression in-vivo, J. Biol. Chem. 263 (1988)
14621-14624.
[31] Y. Tabata, Y. Ikada, Drug delivery systems for antitumor activation of macrophages, Crit. Rev. Ther. Drug
Carrier Syst. 7 (1991) 121-148.
[32] F. Ahsan, I.P. Rivas, M.A. Khan, et al., Targeting to macrophages: role of physicochemical properties of
particulate carriers-liposomes and microspheres on the phagocytosis by macrophages, J. Control. Release
79 (2002) 29-40.
[33] H.S. Nalwa, Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology,
Vol. 1: Biomaterials, American Scientific Publishers, Los Angeles, 2005.
Search WWH ::




Custom Search