Biomedical Engineering Reference
In-Depth Information
[12] W.L. Murphy, S. Hsiong, T.P. Richardson, G.A. Simmons, D.J. Mooney, Effects of a bone-like mineral film
on phenotype of adult human mesenchymal stem cells in-vitro , Biomaterials 26 (2005) 303-310.
[13] R.Z. LeGeros, Biodegradation and bioresorption of calcium phosphate ceramics, Clin. Mater. 14 (1993)
65-88.
[14] K.A. Hing, S.M. Best, W. Bonfield, Characterization of porous hydroxyapatite, J. Mater. Sci. Mater. Med.
10 (1999) 135-145.
[15] R.M. Pilliar, M.J. Filiaggi, J.D. Wells, M.D. Grynpas, R.A. Kandel, Porous calcium polyphosphate scaf-
folds for bone substitute applications— in-vitro characterization, Biomaterials 22 (2001) 963-972.
[16] T.M.G. Chu, D.G. Orton, S.J. Hollister, S.E. Feinberg, J.W. Halloran, Mechanical and in-vivo performance
of hydroxyapatite implants with controlled architectures, Biomaterials 23 (2002) 1283-1293.
[17] S. Radin, G. Reilly, G. Bhargave, P.S. Leboy, P. Ducheyne, Osteogenic effects of bioactive glass on bone
marrow stromal cells, J. Biomed. Mater. Res. 73A (2005) 21-29.
[18] J. Russias, E. Saiz, S. Deville, K. Gryn, G. Liu, R.K. Nalla, et al., Fabrication and in-vitro characterization of
three-dimensional organic/inorganic scaffolds by robocasting, J. Biomed. Mater. Res. 83A (2007) 434-445.
[19] P. Miranda, A. Pajares, E. Saiz, A.P. Tomsia, F. Guiberteau, Mechanical properties of calcium phosphate
scaffolds fabricated by robocasting, J. Biomed. Mater. Res. 85A (2008) 218-227.
[20] C. Durucan, P.W. Brown, Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA
composites, J. Biomed. Mater. Res. 51 (2000) 717-725.
[21] M.P. Ginebra, A. Rilliard, E. Fernández, C. Elvira, J.S. Román, J.A. Planell, Mechanical and rheological
improvement of a calcium phosphate cement by the addition of a polymeric drug, J. Biomed. Mater. Res.
57 (2001) 113-118.
[22] J.E. Barralet, T. Gaunt, A.J. Wright, I.R. Gibson, J.C. Knowles, Effect of porosity reduction by compaction on
compressive strength and microstructure of calcium phosphate cement, J. Biomed. Mater. Res. 63B (2002) 1-9.
[23] A. Yokoyama, S. Yamamoto, T. Kawasaki, T. Kohgo, M. Nakasu, Development of calcium phosphate
cement using chitosan and citric acid for bone substitute materials, Biomaterials 23 (2002) 1091-1101.
[24] M. Bohner, U. Gbureck, J.E. Barralet, Technological issues for the development of more efficient calcium
phosphate bone cements: a critical assessment, Biomaterials 26 (2005) 6423-6429.
[25] M. Bohner, G. Baroud, Injectability of calcium phosphate pastes, Biomaterials 26 (2005) 1553-1563.
[26] D.P. Link, J. van den Dolder, J.J. van den Beucken, J.G. Wolke, A.G. Mikos, J.A. Jansen, Bone response
and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1
loaded gelatin microspheres, Biomaterials 29 (2008) 675-682.
[27] D.P. Link, J. van den Dolder, J.J. van den Beucken, V.M. Cuijpers, J.G. Wolke, A.G. Mikos, et al., Evaluation
of the biocompatibility of calcium phosphate cement/PLGA microparticle composites, J. Biomed. Mater.
Res. 87A (2008) 760-769.
[28] W.E. Brown, L.C. Chow, A new calcium phosphate water setting cement, in: P.W. Brown, (Ed.), Cements
Research Progress, The American Ceramic Society, Westerville, OH, 1986, pp. 352-379.
[29] M.L. Shindo, P.D. Costantino, C.D. Friedman, L.C. Chow, Facial skeletal augmentation using hydroxyapa-
tite cement, Arch. Otolaryngol. Head Neck Surg. 119 (1993) 185-190.
[30] C.D. Friedman, P.D. Costantino, S. Takagi, L.C. Chow, Bone source hydroxyapatite cement: a novel bio-
material for craniofacial skeletal tissue engineering and reconstruction, J. Biomed. Mater. Res. (Appl.
Biomater.) 43 (1998) 428-432.
[31] L.C. Chow, Calcium phosphate cements: chemistry, properties, and applications, Mater. Res. Symp. Proc.
599 (2000) 27-37.
[32] H.H.K. Xu, J.B. Quinn, Calcium phosphate cement containing resorbable fibers for short-term reinforce-
ment and macroporosity, Biomaterials 23 (2002) 193-202.
[33] H.H.K. Xu, S. Takagi, J.B. Quinn, L.C. Chow, Fast-setting and anti-washout calcium phosphate scaffolds
with high strength and controlled macropore formation rates, J. Biomed. Mater. Res. 68A (2004) 725-734.
Search WWH ::




Custom Search