Biomedical Engineering Reference
In-Depth Information
[34] E.F. Burguera, H.H.K. Xu, S. Takagi, L.C. Chow, High early-strength calcium phosphate bone cement:
effects of dicalcium phosphate dehydrate and absorbable fibers, J. Biomed. Mater. Res. 75A (2005) 966-975.
[35] G.D. Brown, B.L. Mealey, P.V. Nummikoski, S.L. Bifano, T.C. Waldrop, Hydroxyapatite cement implant
for regeneration of periodontal osseous defects in humans, J. Periodontol. 69 (1998) 146-157.
[36] Ross M.H., Kaye G.I., Pawlina W., Histology, fourth ed., Wolters Kluwer Co., Baltimore, MD (Chapter 8),
pp. 180-213 (2003).
[37] H.H.K. Xu, C.G. Simon, Fast setting calcium phosphate-chitosan scaffold: mechanical properties and bio-
compatibility, Biomaterials 26 (2005) 1337-1348.
[38] H.H.K. Xu, L.E. Carey, C.G. Simon, Macroporous scaffold of premixed calcium phosphate bone cement:
mechanical properties and cell response, J. Mater. Sci. Mater. Med. 18 (2007) 1345-1353.
[39] International Standards Organization. ISO 10993-5, Biological Evaluation of Medical Devices. Part 5. Tests
for in-vitro Cytotoxicity, International Standards Organization, Geneva, Switzerland, 1999.
[40] Y. Miyamoto, K. Ishikawa, M. Takechi, T. Toh, T. Yuasa, M. Nagayama, et al., Basic properties of calcium
phosphate cement containing atelocollagen in its liquid or powder phases, Biomaterials 19 (1998) 707-715.
[41] U. Hempel, A. Reinstorf, M. Poppe, U. Fischer, M. Gelinsky, W. Pompe, et al., Proliferation and differen-
tiation of osteoblasts on biocement D modified with collagen type I and citric acid, J. Biomed. Mater. Res.
71B (2004) 130-143.
[42] J.L. Moreau, M.D. Weir, H.H.K. Xu, Self-setting collagen-calcium phosphate bone cement: mechanical
and cellular properties, J. Biomed. Mater. Res. A 91 (2009) 605-613.
[43] R.A.A. Muzzarelli, G. Biagini, M. Bellardini, L. Simonelli, C. Castaldini, G. Fraatto, Osteoconduction
exerted by methylpyrolidinone chitosan in dental surgery, Biomaterials 14 (1993) 39-43.
[44] H.H.K. Xu, J.B. Quinn, S. Takagi, L.C. Chow, Processing and properties of strong and non-rigid calcium
phosphate cement, J. Dent. Res. 81 (2002) 219-224.
[45] R. Zhao, E.F. Burguera, H.H.K. Xu, N. Amin, H. Ryou, D.D. Arola, Fiber-reinforced calcium phosphate
scaffold: fatigue and human umbilical cord stem cell seeding, Biomaterials 93(1) (2010) 93-105.
[46] D. Arola, R. Reprogel, Tubule orientation and the fatigue strength of human dentin, Biomaterials 27 (2006)
2131-2140.
[47] D. Arola, R. Reprogel, Effects of aging on the mechanical behavior of human dentin, Biomaterials 26
(2005) 4051-4061.
[48] H.S. Wang, S.C. Hung, S.T. Peng, Mesenchymal stem cells in the Wharton's jelly of the human umbilical
cord, Stem Cells 22 (2004) 1330-1337.
[49] A. Can, S. Karahuseyinoglu, Concise review: human umbilical cord stroma with regard to the source of
fetus-derived stem cells, Stem Cells 25 (2007) 2886-2895.
[50] D. Baksh, R. Yao, R.S. Tuan, Comparison of proliferative and multilineage differentiation potential
of human mesenchymal stem cells derived from umbilical cord and bone marrow, Stem Cells 25 (2007)
1384-1392.
[51] M.M. Bailey, L. Wang, C.J. Bode, K.E. Mitchell, M.S. Detamore, A comparison of human umbilical cord
matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporoman-
dibular joint condylar cartilage, Tissue Eng. 13 (2007) 2003-2010.
[52] L. Wang, M. Singh, L.F. Bonewald, M.S. Detamore, Signalling strategies for osteogenic differentiation of
human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering, J. Tissue Eng. Regen.
Med. 3 (2009) 398-404.
[53] K. Kim, D. Dean, A.G. Mikos, J.P. Fisher, Effect of initial cell seeding density on early osteogenic sig-
nal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks,
Biomacromolecules 10 (2009) 1810-1817.
[54] J.L. Moreau, H.H.K. Xu, Mesenchymal stem cell proliferation and differentiation on an injectable calcium
phosphate-chitosan composite scaffold, Biomaterials 30 (2009) 2675-2682.
Search WWH ::




Custom Search