Biomedical Engineering Reference
In-Depth Information
[75] P.C. Ma, J.K. Kim, B.Z. Tang, Effects of silane functionalization on the properties of carbon nanotube/
epoxy nanocomposites, Compos. Sci. Technol. 67 (2007) 2965 2972.
[76] F.H. Gojny, K. Schulte, Functionalization effect on the thermo-mechanical behavior of multi-wall carbon
nanotube/epoxy composites, Compos. Sci. Technol. 64 (2004) 2303 2308.
[77] X.Q. Liu, M.B. Chan-Park, Facile way to disperse single-walled carbon nanotubes using a noncovalent
method and their reinforcing effect in poly(methyl methyacrylate) composites, J. Appl. Polym. Sci. 114
(2009) 3414 3419.
[78] S.R. Chowdhury, et al., Microwave-induced rapid nanocomposite using dispersed single-wall carbon
nanotubes as the nuclei, J. Mater. Sci. 44 (2009) 1245 1250.
[79] J.M. Yuan, et al., Preparation of polystyrene multiwalled carbon nanotube composites with individual-
dispersed nanotubes and strong interfacial adhesion, Polymer 50 (2009) 3285 3291.
[80] M. Trujillo, et al., Thermal and morphological characterization of nanocomposites prepared by in situ poly-
merization of high-density polyethylene on carbon nanotubes, Macromolecules 40 (2007) 6268 6276.
[81] W. Kaminsky, A. Funck, In situ polymerization of olefins with nanoparticles by metallocene-catalysis,
Macromol. Symp. 260 (2007) 1 8.
[82] S.M. Kwon, et al., Poly(methyl methacrylate)/multiwalled carbon nanotube microspheres fabricated via
in situ polymerization, J. Polym. Sci. Polym. Phys. 46 (2008) 182 189.
[83] W.H. Songa, et al., The preparation of biodegradable polyurethane/carbon nanotube composite based on
in situ cross-linking, Polym. Adv. Technol. 20 (2009) 327 331.
[84] J. Kwon, H. Kim, Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube
and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization, J. Polym.
Sci. Polym. Chem. 43 (2005) 3973 3985.
[85] M. Castro, et al., Carbon nanotube/poly(e-caprolcatone) composite vapor sensors, Carbon 47 (2009)
1930 1942.
[86] D. Priftis, et al., Surface modification of multiwalled carbon nanotubes with biocompatible polymers via
ring opening and living anionic surface initiated polymerization. Kinetics and crystallization hehavior,
J. Polym. Sci. Polym. Chem. 47 (2009) 4379 4390.
[87] T. Biedron, L. Pietrzak, P. Kubisa, Ionic liquid functionalized polylactide by cationic polymerization:
synthesis and stabilization of carbon nanotube suspensions, J. Polym. Sci. Polym. Chem. 49 (2011)
5239
5244.
[88] G.M. Kim, G.H. Michler, P. Potschke, Deformation processes of ultrahigh porous multiwalled carbon
nanotubes/polycarbonate composite fibers prepared by electrospinning, Polymer 46 (2005) 7346 7351.
[89] W. Teo, et al., A dynamic liquid support system for continuous electrospun yarn fabrication, Polymer 48
(2007) 3400 3405.
[90] F. Ko, et al., Electrospinning of continuous carbon nanotuble-filled nanofiber yarns, Adv. Mater. 15
(2003) 1161 1165.
[91] J. Yu, et al., Production of aligned helical polymer nanofibers by electrospinning, Eur. Polym. J. 44
(2008) 2838 2844.
[92] T.J. Sill, H.A.v. Recum, Electrospinning: applications in drug delivery and tissue engineering,
Biomaterials 29 (2008) 1989 2006.
[93] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostat. 35
(1995) 151 160.
[94] L.Y. Yeo, J.R. Friend, Electrospinning carbon nanotube polymer composite nanofibers, J. Exp. Nanosci.
1 (2006) 177 209.
[95] U. Boudriot, et al., Electrospinning approaches towards scaffold engineering—a brief overview, Artif.
Organs. 30 (2006) 785 792.
Search WWH ::




Custom Search