Biomedical Engineering Reference
In-Depth Information
[96] L. Moroni, et al., 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation,
Adv. Funct. Mater. 18 (2008) 53 60.
[97] J.H. Kim, et al., Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping
and electrospinning, Macromol. Rapid Commun. 29 (2008) 1577 1581.
[98] R. Murugan, S. Ramakrishna, Design strategies of tissue engineering scaffolds with controlled fiber
orientation, Tissue Eng. 13 (2007) 1845
1866.
[99] M. Gensheimer, et al., Novel biohybrid materials by electrospinning: nanofibers of poly(ethylene oxide)
and living bacteria, Adv. Mater. 19 (2007) 2480 2482.
[100] Y.Z. Zhang, et al., Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum
albumin)-encapsulated poly( ε -caprolactone) nanofibers for sustained release, Biomacromolecules 7
(2006) 1049 1057.
[101] K. Okhawa, et al., Electrospinning of chitosan, Macromol. Rapid. Commun. 25 (2004) 1600 1605.
[102] J.A. Matthews, et al., Electrospinning of collagen nanofibers, Biomacromolecules 3 (2002) 232 238.
[103] J.S. Stephens, et al., Effects of electrospinning and solution casting protocols on the secondary structure
of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman
spectroscopy, Biomacromolecules 6 (2005) 1405 1413.
[104] J. Li, et al., Electro-spinning and electro-blowing of hyaluronic acid, Biomacromolecules 5 (2004)
1428 1436.
[105] E.K. Brenner, et al., Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions,
Carbohydr. Polym. 87 (2012) 926 929.
[106] M. Stotak, et al., Electrospun cross-linked gelatin fibers with controlled diameter: the effect of matrix
stiffness on proliferative and biosynthetic activity of chondrocytes cultured in vitro, J. Biomed. Res.
95A (2010) 826 828.
[107] M.C. McManus, et al., Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell
culture model, J. Biomed. Res. 81A (2007) 299 309.
[108] G.E. Wnek, et al., Electrospinning of nanofiber fibrogen structures, Nano Lett. 3 (2003) 213 216.
[109] M. Gandhi, et al., Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx
mori silk and carbon nanotubes, Polymer 50 (2009) 1918
1924.
[110] S. Mazinani, A. Ajji, C. Dubois, Morphology, structure and properties of conductive PS/CNT nanocom-
posite electrospun mat, Polymer 50 (2009) 3329
3342.
[111] P. Lu, Y.L. Hsieh, Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospin-
ning, Appl. Mater. Interfaces 2 (2010) 2413 2420.
[112] W. Ji, et al., Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering
applications, Pharm. Res. 28 (2011) 1259 1272.
[113] S.H. Lim, H.Q. Mao, Electrospun scaffolds for stem cell engineering, Adv. Drug. Deliv. Rev. 61
(2009) 1084 1096.
[114] B.G. Keselowsky, D.M. Collard, A.J. Garcia, Surface chemistry modulates focal adhesion composition
and signaling through changes in integrin binding, Biomaterials 25 (2004) 5947 5954.
[115] H. Zhang, Z. Chen, Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite bio-
composite scaffolds for bone tissue engineering, J. Bioact. Compat. Polym. 25 (2010) 241 259.
[116] S. Shao, et al., Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers,
Biomaterials 32 (2011) 2821 2833.
[117] K.D. McKeon-Fischer, D.H. Flagg, J.W. Freeman, Coaxial electrospun poly(e-caprolactone), multi-
walled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol for skeletal muscle tissue engineering,
J. Biomed. Res. A 99 (2011) 493 499.
[118]
J.C. Chen, D.J. Goldhamer, Skeletal muscle stem cells, Reprod. Biol. Endocrinol. 1 (2003) 101.
Search WWH ::




Custom Search