Biomedical Engineering Reference
In-Depth Information
[52] J.K.W. Sandler, et al., A comparative study of melt spun polyamide-12 fibres reinforced with carbon
nanotubes and nanofibres, Polymer 45 (2004) 2001 2015.
[53] T. Villmow, B. Kretzschmar, P. Potschke, Influence of screw configuration, residence time, and specific
mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube compo-
sites, Compos. Sci. Technol. 70 (2010) 2045
2055.
[54] T. Villmow, et al., Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon
nanotubes in poly(lactic acid) matrix, Polymer 49 (2008) 3500 3509.
[55] M.T. Byrne, Y.K. Gun'ko, Recent advances in research on carbon nanotube-polymer composites, Adv.
Mater. 22 (2010) 1672 1688.
[56] J.N. Coleman, et al., Small but strong: a review of the mechanical properties of carbon nanotube-
polymer composites, Carbon 44 (2006) 1624 1652.
[57] Z. Jin, et al., Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly
(methyl methacrylate) composites, Chem. Phys. Lett. 337 (2001) 43 47.
[58] D. Qian, et al., Load transfer and deformation mechanism in carbon nanotube polystyrene composites,
Appl. Phys. Lett. 76 (2000) 2868 2870.
[59] O. Meincke, et al., Mechanical properties and electrical conductivity of carbon-nanotube filled
polyamide-6 and its blends with acrylonitrile/butadiene/styrene, Polymer 45 (2004) 739 748.
[60] G.X. Chen, et al., Multi-walled carbon nanotubes reinforced nylon 6 composites, Polymer 47 (2006) 4760 4767.
[61] P. Potschke, et al., Dispersion of carbon nanotubes into thermoplastic polymers using melt mixing, Am.
Inst. Phys. Conf. Proc. 723 (2004) 478 484.
[62] M.A. Lopez-Manchado, et al., Thermal and mechanical properties of single-walled carbon
nanotubes polypropylene composites prepared by melt processing, Carbon 43 (2005) 1499 1505.
[63] M. Cadek, et al., Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area,
Nano Lett. 4 (2004) 353 356.
[64] L. Liu, et al., Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol)
nanocomposites, Adv. Funct. Mater. 15 (2005) 975 980.
[65] S. Bhattacharyya, et al., Protein-functionalized carbon nanotube-polymer composites, Appl. Phys. Lett.
86 (2005) 113104.
[66] R. Blake, et al., Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene
grafted carbon nanotubes, J.. Mater. Chem. 16 (2006) 4206
4213.
[67] N.G. Sahoo, et al., Effect of functionalized carbon nanotubes on molecular interaction and properties of
polyurethane composites, Macromol. Chem. Phys. 207 (2006) 1773 1780.
[68] M. Kang, S.J. Myung, H.J. Jin, Nylon 610 and carbon nanotube composite by in situ interfacial polymer-
ization, Polymer 47 (2006) 3961 3966.
[69] J. Zhu, et al., Reinforcing epoxy polymer composites through covalent integration of functionalized
nanotubes, Adv. Funct. Mater. 14 (2004) 643 648.
[70] S.D. Bergin, et al., Towards solution of single-walled carbon nanotubes in common solvents, Adv.
Mater. 20 (2008) 1876 1881.
[71] Y.J. Kim, et al., Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy com-
posites, Carbon 43 (2005) 23 30.
[72] R. Haggenmueller, et al., Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6
composites, Polymer 47 (2006) 2381 2388.
[73] J.Y. Jeong, et al., Nylon 610/functionalized multiwalled carbon nanotube composite prepared from in
situ interfacial polymerization, J. Polym. Sci. A 46 (2008) 6041 6050.
[74] Y. Geng, et al., Effects of surfactant treatment on the mechanical and electrical properties of CNT/epoxy
nanocomposites, Compos. Appl. Sci. Manuf 39 (2008) 1876 1883.
Search WWH ::




Custom Search