Geoscience Reference
In-Depth Information
[172] Y. Yin, P. Alivisatos, Colloidal nanocrystal synthesis and the organic inorganic
interface, Nature 437 (2005) 664 670.
[173] I.A. Aksay, C.M. Chun, T. Lee, Mechanism of BaTiO 3 formation by hydrothermal
reactions, in: Proceedings of the Second International Conference on Solvothermal
Reactions, Takamatsu, Japan, December 18 20, 1996, pp. 76 79.
[174] J.H. Adair, R.P. Denkiewicz, F.J. Arriagada, K. Osseo-Asare, in: G.L. Messing, E.R.
Fuller Jr., H. Hausner (Eds), Ceramic Transactions, Ceramic Powder Science II A,
vol. 1, American Ceramic Society, Westerville, OH, 1998, p. 135.
[175] K. Osseo-Asare, F.J. Arriagada, J.H. Adair, in: G.L. Messing, E.R. Fuller Jr., H.
Hausner (Eds), Ceramic Transactions, Ceramic Powder Science II A, vol. 1,
American Ceramic Society, Westerville, OH, 1988.
[176] D. Chen, R. Xu, Solvothermal synthesis and characterization of PbTiO 3 powders, J.
Mater. Chem. 8 (1998) 965 968.
[177] A. Kaiser, A. Berger, D. Sporn, H. Bertagnolli, Lyothermal synthesis of nanocrystal-
line BaTiO 3 and TiO 2 —powders, Ceram. Process. Sci. Technol. (1994) 51 55.
[178] T. Dubois, G. Demazeau, Preparation of Fe 3 O 4 fine particles through a solvothermal
process, Mater. Letts. 19 (1994) 38 47.
[179] G. Demazeau, A. Wang, S. Matar, J.D. Cillard, Solvothermal synthesis of nitrides as
fine particles, High Press. Res. 12 (1994) 343 346.
[180] M. Inoue, T. Nishikawa, T. Nakamura, T. Inui, Glycothermal reaction of rare earth
acetate and iron acetylacetonate: formation of hexagonal REFeO 3 , J. Am. Ceram.
Soc. 80 (1997) 2157 2160.
[181] M. Inoue, H. Otsu, H. Komonami, T. Nakamura, T. Inu, Thermal stability of
phosphorus-modified alumina prepared by the glycothermal method, J. Mat. Sci.
Letts. 13 (1994) 787 789.
[182] C.N.R. Rao, A.S. Govindaraj, R.C. Vivekchand, Inorganic nanomaterials: current sta-
tus and future prospects, Annu. Rep. Prog. Chem. Sect. A102 (2006) 20 45.
[183] A.C.C. Esteves, T. Trindade, Synthetic studies on II/VI semiconductor quantum dots,
Curr. Opin. Solid State Mater. Sci. 6 (4) (2002) 347
353.
[184] O. Masala, R. Seshadri, Synthesis routes for large volumes of nanoparticles, Annu.
Rev. Mater. Res. 34 (2004) 41
81.
[185] J.R. Ota, S.K. Srivastava, A new hydrothermal route for synthesis of molybdenum
disulphide nanorods and related nanostructures, J. Nanosci. Nanotech. 6 (2006)
168 174.
[186] R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, Excited electronic states and
optical spectra of ZnS and CdS crystallites in the 15 to 50 ˚ size range: evolution
from molecular to bulk semiconducting properties, J. Chem. Phys. 82 (1) (1985)
552 559.
[187] Y. Li, Y. Ding, Y. Qian, Y. Zhang, L. Yang, A solvothermal elemental reaction to
produce nanocrystalline ZnSe, Inorg. Chem. 37 (1998) 2844 2845.
[188] S.H. Yu, J. Yang, Z.H. Han, Y. Zhou, R.Y. Yang, Y.T. Qian, et al., Controllable syn-
thesis of nanocrystalline CdS with different morphologies and particle sizes by a
novel solvothermal process, J. Mater. Chem. 9 (1999) 1283 1287.
[189] Q. Peng, Y. Dong, Z. Deng, X.Y. Sun, Li, low-temperature elemental direct-reaction
route to II VI semiconductor nanocrystalline ZnSe and CdSe, Inorg. Chem. 40
(2001) 3840 3841.
[190] Z.X. Deng, L. Li, Y. Li, Novel inorganic organic-layered structures: crystallographic
understanding of both phase and morphology formations of one-dimensional CdE
(E 5 S,Se,Te) nanorods in ethylenediamine, Inorg. Chem. 42 (2003) 2331 2341.
Search WWH ::




Custom Search