Geoscience Reference
In-Depth Information
[153] S.H. Yu, Hydrothermal/Solvothermal process: powerful routes for controlled synthesis
of functional materials, ISHA Newsletter 5 (2) (2010) 9 31.
[154] T. Adschiri, Y. Hakuta, K. Kanamura, K. Arai, Continuous production of LiCoO 2
fine crystals for lithium batteries by hydrothermal synthesis at supernatural condi-
tions, High Pressure Res. 20 (2001) 373 380.
[155] K. Kanamura, A. Goto, R.Y. Ho, T. Umegaki, K. Toyoshima, K. Okada, et al.,
Preparation and electrochemical characterization of LiCoO 2 particles prepared by
super critical water synthesis, Electrochem. Solid State Lett. 3 (2000) 256.
[156] K. Kanamura, T. Umegaki, K. Toyoshima, K. Okada, Y. Hakuta, T. Adschiri, et al.,
Electroceram. Jpn. III Key Eng. Mater. 181 (2001) 147.
[157] M. Cleroq Le, T. Adschiri, K. Arai, Hydrothermal processing of nickel containing
biomining or bioremediation, Biomass Energy 21 (2001) 73 80.
[158] K. Sue, N. Kakinuma, T. Adschiri, K. Arai, Continuous production of nickel fine par-
ticles by hydrogen reduction in supercritical hydrothermal conditions, Ind. Eng.
Chem. Res. 43 (2004) 2073 2078.
[159] T. Adschiri, R. Shibata, T. Sato, M. Watanabe, K. Aria, Catalytic hydrodesulphuriza-
tion of dibenzothiophene through partial oxidation and a water gas shift reaction in
supercritical water, Ind. Eng. Chem. Res. 37 (1998) 2634 2638.
[160] K. Sue, A. Suzuki, Y. Hakuta, H. Hayashi, K. Arai, Y. Takebayashi, et al.,
Hydrothermal-reduction synthesis of Ni nanoparticles by super-rapid heating using a
micromixer, Chem. Letts. 38 (2009) 1018 1020.
[161] R.E. Riman, Chemical precipitation of ceramic powders, in: R.A. Williams (Ed.),
Colloid Eng., Buttersworths, New York, NY, 1992, pp. 140 167.
[162] M.M. Lencka, R.E. Riman, Hydrothermal synthesis of perovskite materials: thermal
dynamic modeling and experimental verification, Ferroelectrics 151 (1994) 159 164.
[163] M.M. Lencka, R.E. Riman, Thermodynamics of the hydrothermal synthesis of calcium
titanate with reference to other alkaline earth titanates, Chem. Mater. 7 (1995) 18 25.
[164] T.R.N. Kutty, R. Balachandran, Direct precipitation of lead zirconate titanate by the
hydrothermal method, Mater. Res. Bull. 19 (1984) 1479
1488.
[165] K.C. Beal, Precipitation of lead zirconate titanate solid solutions under hydrothermal
conditions, in: G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, R.A. Haber (Eds),
Advances in Ceramics: Ceramic Powder Science, American Ceramic Society,
Westerville, OH, 21 (1987) 33 41.
[166] W.J. Dawson, S.L. Swartz, Process for Producing Submicron Ceramic Powders of
Perovskite Compounds with Controlled Stoichiometry and Particle Size, US Patent
No. 5112433, May 12, 1992.
[167] M.M. Lencka, R.E. Riman, Thermodynamic modeling of hydrothermal synthesis of
ceramic powders, Chem. Mater. 5 (1993) 61 70.
[168] M.M. Lencka, R.E. Riman, Synthesis of lead titanate: thermodynamic modeling and
experimental verification, J. Am. Ceram. Soc. 76 (1993) 2649 2659.
[169] J.O. Eckert Jr., C.C. Hung-Houston, B.L. Gersten, M.M. Lencka, R.E. Riman,
Kinetics and mechanisms of hydrothermal synthesis of barium titanate, J. Am.
Ceram. Soc. 79 (1996) 2929 2939.
[170] R.E. Riman, M.M. Lencka, L.E. Me Candlish, B.L. Gersten, A. Andrenko, S.B. Cho,
Intelligent engineering of hydrothermal reactions, in: Proceedings of the Second
International Conference Solvothermal Reactions, (N. Yamasaki, and K. Yamagisawa
Eds) Takamatsu, Japan, December 18 20, 1996, pp. 148 151.
[171] M.M. Lencka, R.E. Riman, Estimation of thermochemical properties for ceramic oxi-
des: a focus on PbZrO 3 , Thermochim. Acta 256 (1995) 193 203.
Search WWH ::




Custom Search