Geoscience Reference
In-Depth Information
[139] Z. Jing, S. Wu, Synthesis and characterization of monodisperse hematite nanoparticles
modified by surfactants via hydrothermal approach, Mater. Lett. 58 (2004)
3637 3640.
[139a] G. Wang, Z. Wang, Y. Zhang, G. Fei, L Zhang, Controlled synthesis and characteri-
zation of large - scale, uniform Dy(OH)3 and Dy2O3 single - crystal nanorods by
hydrothermal method, Nanotechnology 15 (2004) 1307
1311.
[140] M. Sorescu, L. Diamandescu, D. Tarabasanu-Mihaila, V.S. Teodorescu,
Nanocrystalline rhombohedral In2O3 synthesized by hydrothermal and postannealing
pathways, J. Mater. Sci. 39 (2) (2004) 675 677.
[140a] L. Suber, D. Fiorani, P. Imperatory, S. Foglia, A. Montone, R. Zysler, Effects of ther-
mal treatments on structural and magnetic properties of acicular α -Fe 2 O 3 , Nanostruct.
Mater. 11 (1999) 797 803.
[141] S. Takami, T. Sato, T. Mousavand, S. Ohara, M. Umetsu, T. Adschiri, Hydrothermal
synthesis of surface-modified iron oxide nanoparticles, Mater. Letts. 61 (2007)
4769 4772.
[142] M. Wu, Y. Xiong, Y. Jia, J. Ye, K. Zhang, Q. Chen, Co-doped magnetite nanowire
arrays prepared hydrothermally, Appl. Phys. A81 (2005) 1355 1358.
[142a] J. Wan, X. Chen, Z. Wang, X. Yang, Y.T. Qian, A soft-template-assisted hydrothermal
approach to single-crystal Fe 3 O 4 nanorods, J. Cryst. Growth 276 (2005) 571 576.
[143] D.W. Matson, J.C. Linehan, J.G. Darab, M.F. Buehler, Nanophase iron-based lique-
faction catalysis: synthesis, characterization, and model compound reactivity, Energy
Fuels 8 (1994) 10 18.
[144] E. Lester, P. Blood, J. Denger, D. Giddings, B. Azzopard, M. Pohakoff, Synthesis of
nanoparticulate yttrium aluminum garnet in supercritical water ethanol mixtures, J.
Supercrit. Fluids 37 (2006) 209 214.
[145] H. Kominami, M. Miyakawa, S. Murakami, T. Yasuda, M. Kohno, S. Onoue, et al.,
Solvothermal synthesis of tantalum(V) oxide nanoparticles and their photocatalytic
activities in aqueous suspension systems, Phys. Chem. Chem. Phys. 3 (2001)
2697
2703.
[146] K. Matsui, T. Noguchi, N.M. Islam, Y. Hakuta, H. Hayashi, Rapid synthesis of
BaTiO 3 nanoparticles in supercritical water by continuous hydrothermal flow reaction
system, J. Cryst. Growth. 310 (2008) 2584 2589.
[147] H. Hayashi, A. Ueda, A. Suino, K. Hiro, Y. Hakuta, Hydrothermal synthesis of yttria
stabilized ZrO 2 nanoparticles in subcritical and supercritical water using a flow reac-
tion system, J. Solid State Sci. 182 (2009) 2985 2990.
[148] Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino, K. Arai, Flow method for rap-
idly producing barium hexaferrite particles in supercritical water, J. Am. Ceram. Soc.
81 (1998) 2461 2464.
[149] T. Adschiri, Y. Hakuta, K. Sue, K. Arai, Hydrothermal synthesis of metal oxide nano-
particles at supercritical conditions, J. Nanopart. Res. 3 (2001) 227 235.
[150] Y. Hakuta, S. Onai, H. Terayama, T. Adschiri, K. Aria, Production of ultra-fine ceria
particles by hydrothermal synthesis under supercritical conditions, J. Mater. Sci. Lett.
17 (1998) 1211 1213.
[151] E. Lester, G. Aksomaityte, Jun Li, Sara Gomez, Lose Gonzalez - Gonzatez, Martyn
Poliakoff, Controlled continuous hydrothermal synthesis of cobalt oxide (Co 3 O 4 )
nanoparticles, Prog, Cryst. Mater 58 (2012) 3 13.
[152] W.T. Yao, S.H. Yu, Recent advances in hydrothermal syntheses of low dimensional
nanoarchitectures, Int. J. Nanotech. 4 (2007) 21 31.
Search WWH ::




Custom Search