Geoscience Reference
In-Depth Information
[191] Y. Li, F. Huang, Q. Zhang, Z. Gu, Solvothermal synthesis of nanocrystalline cad-
mium sulfide, J. Mater. Sci. 35 (2000) 5933 5937.
[192] J. Yao, G. Zhao, D. Wang, G. Han, Solvothermal synthesis and characterization of
CdS nanowires/PVA composite films, Mater. Letts. 59 (28) (2005) 3652 3655.
[193] H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Lin, et al., Shape-control-led synthesis
of CdS nanocrystals in mixed solvents, Crystal Growth Design. 5 (2005) 1801
1806.
[194] Y.C. Li, X.H. Li, C.H. Yang, Y.F. Li, Controlled synthesis of CdS nanorods and hex-
agonal nanocrystals, J. Mater. Chem. 13 (10) (2003) 2641 2648.
[195] G.T. Zhou, X. Wang, J.C. Yu, A low-temperature and mild solvothermal route to the
synthesis of wurtzite-type ZnS with single-crystalline nanoplate-like morphology,
Cryst. Growth Design. 5 (5) (2005) 1761 1765.
[196] W. Zhang, Q. Yang, L. Xu, W. Yu, Y. Qian, Growth of PbS crystals from nanocubes
to eight-horn-shaped dendrites through a complex synthetic route, Mater. Letts. 59
(27) (2005) 3383 3388.
[197] U.K. Gautam, R. Seshadri, Preparation of PbS and PbSe nanocrystals from a new sol-
vothermal route, Mater. Res. Bull. 39 (2004) 669 676.
[198] Y. Li, Z. Wang, Y. Ding, Room temperature synthesis of metal chalcogenides in ethy-
lenediamine, Inorg. Chem. 38 (1999) 4737 4740.
[199] S. Biswas, S. Kar, S. Chaudhuri, Solvothermal synthesis of α -MnS single crystals,
J. Cryst. Growth 284 (2005) 129 135.
[200] Y. Liu, Y. Xu, J.P. Li, B. Zhang, D. Wu, Y.H. Sun, Synthesis of CdS x Se 1 2 x nanorods
via a solvothermal route, Mater. Res. Bull. 41 (2006) 99 105.
[201] B.B. Wang, M.K. Zhu, H. Wang, G.B. Dong, Study on growth and photolumines-
cence of zinc telluride crystals synthesized by hydrothermal method, Opt. Mater. 34
(2011) 42 47.
[202] X. Ji, T.M. Tritt, X. Zhao, J.W. Kolis, Solution chemical synthesis of nanostructured
thermoelectric materials, J. South. Carolina Acad. Sci. 6 (2008) 1 9.
[203] G. Tai, C. Miao, Y. Wang, Y. Bai, H. Zhang, W. Guo, Solvothermal synthesis and
thermoelectric properties of indium telluride nanostring-cluster hierarchical structures,
Nanoscale Res. Lett. 6 (2011) 329.
[204] B. Denac, M. Kristl, M. Drofenik, Thermal behavior of nanocrystalline cadmium sele-
nides and tellurides, Chacogenide Lett. 8 (2011) 427 434.
[205] J.V. Williams, Hydrothermal Synthesis and Characterization of Cadmium Selenide
Nanocrystals, Ph.D. Thesis, University of Michigan, USA, 2008.
[206] H. Wu, H. Xu, Q. Su, T. Chen, M. Wu, Size- and shape-tailored hydrothermal synthe-
sis of YVO 4 crystals in ultra-wide pH range conditions, J. Mater. Chem. 13 (2003)
1223 1228.
[207] H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, M. Haase, Wet-chemical syn-
thesis of doped colloidal nanomaterials: particles and fibers of LaPO 4 : Eu, LaPO 4 :Ce
and LaPO 4 :Ce,Tb, Adv. Mater. 11 (1999) 840 844.
[208] I.F. Elder, M.J.P. Payne, YAP vs. YAG as a diode pumped host for thulium, Opt.
Commun. 148 (1998) 265 269.
[209] D. Jia, Y. Wang, X. Guo, K. Li, Y.K. Zou, W. Jia, Synthesis and characterization of
YAG:Ce3 1 LED nanophosphors, J. Electrochem. Soc. 154 (2007) J1 J4.
[210] M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, et al., Fabrication, pattern-
ing, and optical properties of nanocrystalline YVO 4 :A (A 5 Eu 3 1 ,Dy 3 1 ,Sm 3 1 ,
Er 3 1 )phosphorf lmsviasol
gel soft
lithography, Chem. Mater. 14 (2002)
2224 2231.
Search WWH ::




Custom Search