Geoscience Reference
In-Depth Information
[53] H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Exchange-coupled nanocomposite mag-
nets by nanoparticle self-assembly, Nature 420 (2002), pp. 395 398.
[54] Z. Tian, J. Liu, J.A. Voigt, H. Xu, M.J. McDermott, Dendritic growth of
cubically ordered nanoporous materials through self-assembly, Nano. Lett. 3 (2003)
89 92.
[55] W. Liu, W. Zhong, X. Wu, N. Tang, Y. Du, Hydrothermal microemulsion synthesis
of cobalt nanorods and self assembly into square shaped nanostructures, J. Cryst.
Growth 284 (2005) 446 451.
[56] Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y.T. Qian, Rectangular single crystal mullite
microtubes, Adv. Mater. 15 (2003) 1946 1949.
[57] H.L. Niu, Q.W. Chen, Y.S. Lin, Y.S. Jia, H.F. Zhu, M. Ning, Hydrothermal formation
of magnetic Ni Cu alloy nanocrystallites at low temperatures, Nanotechnology 15
(2004) 1054 1058.
[58] E. Reverchon, R. Adami, Nanomaterials and supercritical fluids, J. Supercrit. Fluid 37
(2006) 1 22.
[59] A. Kameo, T. Yoshimura, K. Esumi, Preparation of noble metal nanoparticles in super-
critical carbon dioxide, Colloids Surf. A Physicochem. Eng. Aspects 215 (2005)
181 189.
[60] P.S. Shah, S. Husain, K.P. Johnston, B.A. Korgel, Nanocrystal arrested precipitation
in supercritical carbon dioxide, J. Phys. Chem. B-105 (2001) 9433 9440.
[61] M.C. McLeod, W.F. Gale, C.B. Roberts, Metallic nanoparticle production utilizing a
supercritical carbon dioxide flow process, Langmuir 20 (2004) 7078 7082.
[62] J.M. Blackburn, D.P. Long, A. Cabanas, J.J. Watkins, Deposition of conformal copper
and nickel films from supercritical carbon dioxide, Science 294 (2001) 141 145.
[63] B. Basavalingu, J.M.C. Moreno, K. Byrappa, Y.G. Gogotsi, M. Yoshimura,
Decomposition of silicon carbide in the presence of organic compounds under hydro-
thermal conditions, Carbon 39 (2001) 1763 1767.
[64] R.C. De Vries, Hydrothermal carbon: a review from carbon in “Herkimer Diamonds”
to that in real diamonds, in: S. Somiya (Ed.), Advanced Ceramics, vol. 3, Elsevier,
The Netherlands, 1990.
[65] O. Guillois, G. Ledoux, C. Reynaud, Diamond infrared emission bands in circumstel-
lar media, Astrophys. J. 521 (1999) L1333 L1336.
[66] V.V. Danilenko, On the history of the discovery of nanodiamond synthesis, Phys.
Solid State 46 (2004) 595 599.
[67] N.R. Greiner, D.S. Phillips, J.D. Johnson, E. Volk, Diamonds in detonation soot,
Nature 333 (1988) 440 442.
[68] V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons from porous network to
nanotubes and graphene, Adv. Funct. Mater 21 (2011) 210 833.
[69] Z. Liu, X. Zhou, Y.T. Qian, Synthetic methodologies for carbon nanomaterials, Adv.
Mater. 22 (2010) 1963 1966.
[70] Y.G. Gogotsi, K.G. Nickel, P. Kofstad, Hydrothermal synthesis of diamond from
diamond-seeded β -SiC powder, J. Mater. Chem. 5 (1995) 2313 2314.
[71] R. Roy, D. Ravindranathan, A. Badzian, Evidence for hydrothermal growth of diamond
in the C H OandC H O halogen system, J. Mater. Res. 11 (5) (1996) 1164 1168.
[71a] Basavalingu, et al., Structure and electronic properties of carbon onions, J. Chem.
Phys. 114 (2001) 1 6.
[72] Y.G. Gogotsi, J.D. Jeon, M.J. McNallan, Carbon coatings on silicon carbide by reac-
tion with chlorine-containing gases, J. Mater. Chem. 7 (9) (1997) 1841 1848.
Search WWH ::




Custom Search