Geoscience Reference
In-Depth Information
[33] K. Von Chroustshoff, History of Hydrothermal Technology, Ann. Chem. 3 (1873)
281 286.
[34] G.W. Morey, P. Niggli, The hydrothermal formation of silicates, a review, J. Am.
Ceram. Soc. 35 (1913) 1086 1130.
[35] J.B. Hannay, On the artificial formation of the diamond, Proc. R. Soc. London 30
(1880) 178
189.
[36] G. Spezia, La Pressione e' chimicamente inattive nella solubilite e riecostituzione del
quarzo, Atti. Accad. Sci. Torino 40 (1904 2 1905) 254 262.
[37] M. Yoshimura, Soft solution processing: concept and realization of direct fabrication
of shaped ceramics (nano- crystals, whiskers, films, and/or patterns) in solutions with-
out post firing, J. Mater. Sci. 41 (2006) 1299 1306.
[38] S. Komarneni, R. Roy, Q.H. Li, Microwave-hydrothermal synthesis of ceramic pow-
ders, Mater Res. Bull. 27 (1992) 1393 1405.
[39] S.H. Yu, Y.T. Qian, Soft synthesis inorganic nanorods, nonowires, and nanotubes,
in: M. Adachi, D.J. Lockwood (Eds), Nanostructure Science and Technology, Self-
Organized Nanoscale Materials, John Wiley & Sons, USA, 2006, pp. 101 158.
[40] G. Demazeau, Solvothermal synthesis, in: Proceedings of the First International
Conference on Solvothermal Reactions, N. Yamasaki, and K. Yanasagawa (Eds)
Takamatsu, Japan, December 5 7, 1994.
[41] T. Adschiri, K. Arai, Hydrothermal synthesis of metal oxide nanoparticles under super-
critical conditions, in: Y.-P. Sun (Ed.), Supercritical Fluid Technology in Materials
Science and Engineering, Marcel Dekker, New York, NY, 2002, pp. 311 325.
[42] K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid tech-
nology—towards biomedical applications, Adv. Drug Deliv. Rev. 60 (2007) 299 327.
[43] T. Mousavand, Synthesis of organic inorganic hybrid nanoparticles by in situ surface
modification under supercritical hydrothermal conditions, Ph.D. Thesis, Tohoku
University, Sendai, Japan, 2007.
[44] J. Zhang, S. Ohara, M. Umetsu, T. Naka, Y. Hatakeyama, T. Adschiri, Novel approach
to colloidal ceria nanocrystals: tailor-made crystal shape in supercritical water, Adv.
Mater. 19 (2007) 203
206.
[45] L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor
crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys.
80 (1984), pp. 4403.
[46] M. Bruchez, M. Moronne, P. Gin, P. Weiss, A.P. Alivisatos, Semiconductor nanocrys-
tals as fluorescent biological labels, Science 281 (1998) 2013 2016.
[47] M. Green, Solution routes to III V semiconductor quantum dots, Curr. Opin. Solid
State Mater. Chem. 6 (2002) 355 363.
[48] M. Rajamathia, Seshadri, Oxide and chacogenide nanoparticles from hydrothermal/
solvothermal reaction, R. Curr. Opin. Solid State Mater. Chem 6 (2002) 337 345.
[49] S. Forster, M. Anjtonietti, Amphiphilic block copolymers in structure-controlled nano-
materials hybrids, Adv. Mater. 10 (1998) 195 217.
[50] Y. Zhu, H. Zheng, Y. Li, L. Gao, Z. Yang, Y.T. Qian, Synthesis of Ag dendritic nanos-
tructures by using anisotropic nickel nanotubes, Mater. Res. Bull. 38 (2003)
1829 1834.
[51] V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size con-
trol: the case of cobalt, Science 291 (2001) 2115 2117.
[52] Q. Xie, Z. Dai, W. Huang, J. Lianjg, C. Jiang, Y.T. Qian, Synthesis of ferromagnetic
single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction pro-
cess, Nanotechnology 16 (2005) 2958 2962.
Search WWH ::




Custom Search