Geoscience Reference
In-Depth Information
[73] Y. Li, Y.T. Qian, H. Liao, Y. Ding, L. Yang, C. Xu, et al., A reduc-
tion pyrolysis catalysis synthesis of diamond, Science 281 (1998) 246.
[74] Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, et al., A catalytic assembly sol-
vothermal route to multiwall carbon nanotubes at a moderate temperature, J. Am.
Chem. Soc. 122 (2000) 12383 12384.
[75] W. Zhang, D. Ma, J. Liu, L. Kong, W. Yu, Y. Qian, Solvothermal synthesis of carbon
nanotubes by metal oxide and ethanol at mild temperature, Carbon 42 (2004)
2143 2341.
[76] J. Zhang, J. Li, J. Cao, Y. Qian, Synthesis and characterization of larger diameter car-
bon nanotubes from catalytic pyrolysis of polypropylene, Mater. Lett. 62 (2008)
1839 1842.
[77] Y.M. Kim, H.W. Lee, S.H. Lee, S.S. Kim, S.H. Park, J.K. Jeon, et al., Pyrolysis
properties and kinetics of mandarin peel, Korean J. Chem. Eng. 28 (2011)
2012 2016.
[78] H. Li, Y. Zhu, Z. Mao, J. Gu, J. Zhang, Y. Qian, Synthesis and characterization of
carbon fibrils formed by stacking graphite sheets of nanometer thickness, Carbon 47
(2009) 328 330.
[79] B. Hu, K. Wang, L.H. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Engineering carbon
materials from the hydrothermal carbonization process of biomass, Adv. Mater. 22
(2010) 813 828.
[80] B. Hu, S.H. Yu, K. Wang, L. Liu, X.W. Xu, Functional carbonaceous materials from
hydrothermal carbonization of biomass: an effective chemical process, Dalton Trans.
40 (2008) 5414 5423.
[81] B. Basavalingu, P. Madhusudan, A.S. Dayananda, K. Lal, K. Byrappa, M. Yoshimura,
Formation of filamentous carbon through dissociation of chromium carbide under
hydrothermal conditions, J. Mater. Sci. 43 (2008) 2153 2157.
[82] N.S. Jacobson, Y.G. Gogotsi, M. Yoshimura, Thermodynamic and experimental study
of carbon formation on carbides under hydrothermal conditions, J. Mater. Chem. 5
(1995) 595
601.
[83] C.X. Wang, Y.H. Yang, N.S. Xu, G.W. Yang, Thermodynamics of diamond nucle-
ation on the nanoscale, J. Am. Chem. Soc. 126 (2004) 11303 11306.
[84] T. Kraft, K.G. Nickel, Carbon formed by hydrothermal treatment of α -SiC crystals,
J. Mater. Chem. 10 (2006) 671 680.
[85] B. Zhang, C.Y. Liu, Y. Liu, A novel one-step approach to synthesize fluorescent car-
bon nanoparticles, Eur. J. Inorg. Chem. (2010) 4411 4414.
[86] T. Kraft, K.G. Nickel, Carbon formed by hydrothermal treatment of α -SiC crystals,
J. Mater. Chem. 10 (2000) 671 680.
[87] J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal
synthesis of graphene quantum dots surface-passivated by polyethylene glycol and
their photoelectric conversion under near-infrared light, New J. Chem. 36 (2012)
97 101.
[88] Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, et al., Quantum
sized carbon dots for bright and colorful luminescence, J. Am. Chem. Soc. 128 (2006)
7756 7757.
[89] D.W. Stickler, W.G. Carlson, Electrical conductivity in the ZrO 2 -rich region of sev-
eral M 2 O 3 ZrO 2 systems, J. Am. Ceram. Soc. 48 (1965) 286 289.
[90] D.J. Green, R.H.J. Hannink, M.V. Swain, Transformation Toughening of Ceramics,
CRS Press, Boca Raton, FL, 1989.
Search WWH ::




Custom Search