Environmental Engineering Reference
In-Depth Information
103.
S.P. Beeby, M.J. Tudor, and N.M. White, “Energy harvesting vibration sources
for microsystems applications,” Measurement Science and Technology , vol. 17, no.
12, pp. R175-R195, 2006.
104.
M. Umeda, K. Nakamura, and S. Ueha, “Analysis of the transformation of me-
chanical impact energy to electric energy using piezoelectric vibrator,” Japanese
Journal of Applied Physics , vol. 35, no. 5B, pp. 3267-3273, 1996.
105.
C. Keawboonchuay and T.G. Engel, “Maximum power generation in a piezo-
electric pulse generator,” IEEE Transactions on Plasma Science , vol. 31(2), no. 1,
pp. 123-128, 2003.
106.
M. Renaud, P. Fiorini, and C. Van Hoof, “Optimization of a piezoelectric uni-
morph for shock and impact energy harvesting,” Smart Materials and Structures ,
vol. 16, no. 4, pp. 1125-1135, 2007.
107.
J.F. Antaki, G.E. Bertocci, E.C. Green, A. Nadeem, T. Rintoul, R.L. Kormos, and
B.P. Griffith, “A gait powered autologous battery charging system for artificial
organs,” American Society of Artificial Internal Organs Conference , pp. M588-M595,
1995.
108.
J. Paradiso and M. Feldmeier, “A compact, wireless, self-powered pushbutton
controller,” Ubicomp 2001: Ubiquitous Computing, LNCS 2201,
Springer-Verlag,
New York, 2001, pp. 299-304.
109.
F. Schmidt and M. Heiden, Wireless Sensors Enabled by Smart Energy—Concepts
and Solutions , EnOcean GmbH, Oberhaching, Germany.
110.
A. Rida, L. Yang, and M. Tentzeris, “Chapter 5: State-of-the-art technology for
RFID/sensors,” RFID-Enabled Sensor Design and Applications , Artech House, Lon-
don, 2010.
111.
Piezo Systems, Inc., “Introduction to piezo transducers,” http://www.piezo.
com/tech2intropiezotrans.html , accessed on May 17, 2010.
112.
S.B. Dewan, G.R. Slemon, and A. Straughen, Power Semiconductor Drives ,Wiley,
New York, 1984, Chapters 2 and 5.
113.
K.Y. Hoe, “An investigation of self-powered RF wireless sensors,” Bachelor's
thesis, National University of Singapore, 2006.
114.
H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, and H.F.
Hofmann, “Energy harvesting using a piezoelectric cymbal transducer in dy-
namic environment,” Japanese Journal of Applied Physics, Part 1 (Regular Papers,
Short Notes and Review Papers) , vol. 43, no. 9A, pp. 6178-6183, 2004.
115.
B.R. Face, “Self-powered, electronic keyed, multifunction switching system,”
Face International, Patent U.S. 7161276, 2007.
116.
D. Dausch and S. Wise, Compositional Effects on Electromechanical Degradation of
RAINBOW Actuators , NASA , Hampton, VA, 1998.
117.
R.G. Bryant, “LaRC TM -SI: a soluble aromatic polyimide,” High Performance Poly-
mers , vol. 8, pp. 607-615, 1996.
118.
K. Mossi, C. Green, Z. Ounaies, and E. Hughes, “Harvesting energy using a thin
unimorph prestressed bender: Geometrical effects,” Journal of Intelligent Material
Systems and Structures , vol. 16, no. 3, pp. 249-261, 2005.
119.
K. Mossi, Z. Ounaies, and S. Oakley, “Optimizing energy harvesting of a com-
posite unimorph pre-stressed bender,” 16th Technical Conference of the American
Society for Composites , 2001.
120.
A.D. Danak, H.S. Yoon, and G.N. Washington, “Optimization of electrical out-
put in response to mechanical input in piezoceramic laminated shells,” ASME
International Congress and Exposition , pp. 309-315, 2003.
Search WWH ::




Custom Search