Environmental Engineering Reference
In-Depth Information
121.
J.T. Cher, “Design of a piezoelectric energy harvesting wireless electronic
switch,” Bachelor's thesis, National University of Singapore, 2008.
122.
M.K. Stojcev, M.R. Kosanovic, and L.R. Golubovic, “Power management and
energy harvesting techniques for wireless sensor nodes,” 9th International
Conference on Telecommunications in Modern Satellite, Cable, and Broadcasting Ser-
vices , pp. 65-72, 2009.
123.
S. Taylor, N. Miller, W. Sifuentes, E. Moro, G. Park, C. Farrar, E. Flynn, D. Mas-
carenas, and M. Todd, “Energy harvesting and wireless energy transmission for
embedded sensor nodes,” Proceedings of the SPIE—The International Society for
Optical Engineering , vol. 7288, p. 728810, 2009.
124.
R. Torah, P. Glynne-Jones, M. Tudor, T. O'Donnell, S. Roy, and S. Beeby, “Self-
powered autonomous wireless sensor node using vibration energy harvesting,”
Measurement Science and Technology , vol. 19, no. 12, p. 125202, 2008.
125.
Y.T. He, Y.Q. Li, L.H. Liu, and L. Wang, “Solar micro-power system for self-
powered wireless sensor nodes,” Proceedings of the SPIE—The International Society
for Optical Engineering , vol. 7133, p. 71333Z (8 pp.), 2008.
126.
Y. Tadesse, S. Zhang, and S. Priya, “Multimodal energy harvesting system: piezo-
electric and electromagnetic,” Journal of Intelligent Material Systems and Structures ,
vol. 20, no. 5, pp. 625-632, 2009.
127.
A. Khaligh, P. Zeng, and C. Zheng, “Kinetic energy harvesting using piezoelectric
and electromagnetic technologies—State of the art,” IEEE Transaction on Industrial
Electronics , vol. 57, no. 3, pp. 850-860, 2010.
128.
N.J. Guilar, T.J. Kleeburg, A. Chen, D.R. Yankelevich, and R. Amirtharajah, “In-
tegrated solar energy harvesting and storage,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems , vol. 17, no. 5, pp. 627-637, 2009.
129.
H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and M. Rosset,
“Efficient power management circuit: from thermal energy harvesting to above-
IC microbattery energy storage,” IEEE Journal of Solid-State Circuits , vol. 43, no.
1, pp. 246-255, 2008.
130.
A.N. Celik and N. Acikgoz, “Modelling and experimental verification of the
operating current of mono-crystalline photovoltaic modules using four- and
five-parameter models,” Applied Energy , vol. 84, no. 1, pp. 1-15, 2007.
131.
M.G. Villalva, J.R. Gazoli, and E.R. Filho, “Comprehensive approach to modeling
and simulation of photovoltaic arrays,” IEEE Transaction on Power Electronics , vol.
24, no. 5, pp. 1198-1208, 2009.
132.
D. Sera, R. Teodorescu, and P. Rodriguez, “PV panel model based on datasheet
values,” IEEE International Symposium on Industrial Electronics (ISIE) , pp. 2392-
2396, 2007.
133.
T. Esram and P.L. Chapman, “Comparison of photovoltaic array maximum
power point tracking techniques,” IEEE Transactions on Energy Conversion , vol.
22, no. 2, pp. 439-449, 2007.
134.
R. Faranda and S. Leva, “Energy comparison of MPPT techniques for PV
Systems,” WSEAS Transactions on Power Systems , vol. 3, no. 3, pp. 446-455,
2008.
135.
K.H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photo-
voltaic power tracking: An algorithm for rapidly changing atmospheric condi-
tions,” IEE Proceedings—Generation, Transmission and Distribution , vol. 142, no. 1,
pp. 59-64, 1995.
Search WWH ::




Custom Search