Hardware Reference
In-Depth Information
17. Arakawa F et al (2005) An exact leading non-zero detector for a floating-point unit. IEICE
Trans Electron E88-C(4):570-575
18. Arakawa F et al (2005) SH-X: an embedded processor core for consumer appliances. ACM
SIGARCH Comput Architect News 33(3):33-40
19. Kamei T, et al (2004) A resume-standby application processor for 3G cellular phones. ISSCC
Dig Tech Papers:336-337, 531
20. Ishikawa M, et al (2004) A resume-standby application processor for 3G cellular phones with
low power clock distribution and on-chip memory activation control. COOL Chips VII
Proceedings, vol. I:329-351
21. Ishikawa M et al (2005) A 4500 MIPS/W, 86 mA resume-standby, 11 mA ultra-standby appli-
cation processor for 3 G cellular phones. IEICE Trans Electron E88-C(4):528-535
22. Yamada T, et al (2005) Low-Power Design of 90-nm SuperH TM Processor Core. Proceedings
of 2005 IEEE International Conference on Computer Design (ICCD), pp 258-263
23. Arakawa F, et al (2005) SH-X2: An embedded processor core with 5.6 GFLOPS and 73 M
Polygons/s FPU, 7th Workshop on Media and Streaming Processors (MSP-7):22-28
24. Yamada T et al (2006) Reducing consuming clock power optimization of a 90 nm embedded
processor core. IEICE Trans Electron E89-C(3):287-294
25. Hattori T, et al (2006) A power management scheme controlling 20 power domains for a single-
chip mobile processor. ISSCC Dig Tech Papers, Session 29.5
26. Ito M, et al (2007) A 390 MHz single-chip application and dual-mode baseband processor in
90 nm Triple-Vt CMOS. ISSCC Dig Tech Papers, Session 15.3
27. Naruse M, et al (2008) A 65 nm single-chip application and dual-mode baseband processor
with partial clock activation and IP-MMU. ISSCC Dig Tech Papers, Session 13.3
28. Ito M et al (2009) A 65 nm single-chip application and dual-mode baseband processor with
partial clock activation and IP-MMU. IEEE J Solid-State Circuits 44(1):83-89
29. Kamei T (2006) SH-X3: Enhanced SuperH core for low-power multi-processor systems. Fall
Microprocessor Forum 2006
30. Arakawa F (2007) An embedded processor: is it ready for high-performance computing?
IWIA 2007:101-109
31. Yoshida Y, et al (2007) A 4320MIPS four-processor core SMP/AMP with Individually managed
clock frequency for low power consumption. ISSCC Dig Tech Papers, Session 5.3
32. Shibahara S, et al (2007) SH-X3: Flexible SuperH multi-core for high-performance and low-
power embedded systems. HOT CHIPS 19, Session 4, no 1
33. Nishii O, et al (2007) Design of a 90 nm 4-CPU 4320 MIPS SoC with individually managed
frequency and 2.4 GB/s multi-master on-chip interconnect. Proc 2007 A-SSCC, pp 18-21
34. Takada M, et al (2007) Performance and power evaluation of SH-X3 multi-core system. Proc
2007 A-SSCC, pp 43-46
35. Ito M, et al (2008) An 8640 MIPS SoC with independent power-off control of 8 CPUs and 8
RAMs by an automatic parallelizing compiler. ISSCC Dig Tech Papers, Session 4.5
36. Yoshida Y, et al (2008) An 8 CPU SoC with independent power-off control of CPUs and
multicore software debug function. COOL Chips XI Proceedings, Session IX, no. 1
37. Arakawa F (2008) Multicore SoC for embedded systems. International SoC Design Conference
(ISOCC) 2008, pp.I-180-I-183
38. Kido H, et al (2009) SoC for car navigation systems with a 53.3 GOPS image recognition
engine. HOT CHIPS 21, Session 6, no. 3
39. Yuyama Y, et al (2010) A 45 nm 37.3GOPS/W heterogeneous multi-core SoC. ISSCC
Dig:100-101
40. Nito T, et al (2010) A 45 nm heterogeneous multi-core SoC supporting an over 32-bits physical
address space for digital appliance. COOL Chips XIII Proceedings, Session XI, no. 1
41. Arakawa F (2011) Low power multicore for embedded systems. COMS Emerg Technol,
Session 5B, no. 1
42. Song SP et al (1994) The PowerPC 604 RISC microprocessor. IEEE Micro 14(5):8-22
43. Levitan D, et al (1995) The PowerPC 620 TM microprocessor: a high performance superscalar
RISC microprocessor. Compcon '95.'Technologies for the Information Superhighway', Digest
of Papers, pp 285-291
Search WWH ::




Custom Search