Biomedical Engineering Reference
In-Depth Information
14. Green EM, Boynton ZL, Harris LM et al (1996) Genetic manipulation of acid formation
pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology
142:2079-2086
15. Gu Y, Ding Y, Ren C et al (2010) Reconstruction of xylose utilization pathway and regulons
in Firmicutes. BMC Genomics 11(1):255
16. Gu Y, Li J, Zhang L et al (2009) Improvement of xylose utilization in Clostridium
acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli.
J Biotechnol 143(4):284-287
17. Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation
analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824.
J Bacteriol 184(13):3586-3597
18. Heap JT and Minton NP (2009) Methods. PCT/GB2009/000380
19. Heap JT, Pennington OJ, Cartman ST et al (2007) The ClosTron: a universal gene knock-out
system for the genus Clostridium. J Microbiol Methods 70(3):452-464
20. Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable
of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852-1859
21. Hu C, Du Y, Yang Y (2007) Preliminary study on coupling between biodiesels and acetone-
butanol fermentation. Chin J Process Eng 5(1):27-33
22. Hu S, Zheng H, Gu Y et al (2011) Comparative genomic and transcriptomic analysis revealed
genetic characteristics related to solvent formation and xylose utilization in Clostridium
acetobutylicum EA 2018. BMC Genomics 12:1471-2164
23. Jia K, Zhu Y, Zhang Y et al (2011) Group II intron-anchored gene deletion in Clostridium.
PLoS One 6(1):e16693
24. Jiang Y, Xu C, Dong F et al (2009) Disruption of the acetoacetate decarboxylase gene in
solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:
284-291
25. Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial
strains. FEMS Microbiol Rev 17(3):223-232
26. Jones
DT,
Woods
DR
(1986)
Acetone-butanol
fermentation
revisited.
Microbiol
Rev
50(4):484-524
27. Karberg M, Guo H, Zhong J et al (2001) Group II introns as controllable gene targeting
vectors for genetic manipulation of bacteria. Nat Biotechnol 19(12):1162-1167
28. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum:
recent advances to improve butanol production. Curr Opin Biotechnol 22:634-647
29. Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by clostridia.
Biotechnol Bioeng 101(2):209-228
30. Li D, Chen H (2007) Fermentation of acetone and butanol coupled with enzymatic hydrolysis of
steam exploded cornstalk stover in a membrane reactor. Chin J Process Eng 7(6):1212-1216
31. Liu S, Qureshi N (2009) Proteome analysis and comparison of Clostridium acetobutylicum
ATCC 824 and Spo0A strain variants. New Biotechnol 26:117-121
32. Liu Z, Ying Y, Li F et al (2010) Butanol production by Clostridium beijerinckii ATCC 55025
from wheat bran. J Ind Microbiol Biotechnol 37(5):495-501
33. Luo J, Yi S, Su Y et al (2010) Separation and concentration of butanol from acetone-butanol-
ethanol mixed solution by pervaporation. Chem Eng 38(2):43-46
34. Mao S, Luo Y, Bao G et al (2011) Comparative analysis on the membrane proteome of
Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. Mol BioSyst
7:1660-1677
35. Mermelstein LD, Welker NE, Bennett GN et al (1992) Expression of cloned homologous
fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology (NY) 10(2):
190-195
36. Mills DA, Manias DA, McKay LL et al (1997) Homing of a group II intron from Lactococcus
lactis subsp. lactis ML3. J Bacteriol 179(19):6107
37. Mitchell
WJ
(1998)
Physiology
of
carbohydrate
to
solvent
conversion
by
clostridia.
Adv Microb Physiol 39:31-130
Search WWH ::




Custom Search