Biomedical Engineering Reference
In-Depth Information
38. Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-
butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):
415-423
39. Nolling J, Breton G, Omelchenko M et al (2001) Genome sequence and comparative analysis
of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823-4838
40. Ounine K, Petitdemange H, Raval G et al (1985) Regulation and butanol inhibition of
D-xylose and D -glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol
49:874-878
41. Qureshi N, Ezeji TC, Ebener J et al (2008) Butanol production by Clostridium beijerinckii.
Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99(13):5915-5922
42. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate
using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419-427
43. Ren C, Gu Y, Hu S et al (2010) Identification and inactivation of pleiotropic regulator CcpA
to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab
Eng 12:446-454
44. Rodriguez SA, Davis G, Klose KE (2009) Targeted gene disruption in Francisella tularensis
by group II introns. Methods 49(3):270-274
45. Shao L, Hu S, Yang Y et al (2007) Targeted gene disruption by use of a group II intron
(targetron) vector in Clostridium acetobutylicum. Cell Res 17:963-965
46. Soucaille P, Figge R, Croux C (2008) Process for chromosomal integration and DNA
sequence replacement in clostridia. PCT/EP2006/066997
47. Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and
tolerance in Clostridium acetobutylicum. J Bacteriol 186(7):2006-2018
48. Tummala SB, Welker NE, Papoutsakis ET (2003) Design of antisense RNA constructs for
downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol
185(6):1923-1934
49. Vollherbst-Schneck K, Sands J, Montenecourt B (1984) Effect of butanol on lipid composition
and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47(1):193-194
50. Wang S, Zhang Y, Dong H et al (2011) Formic acid triggers the ''acid crash'' of acetone-
butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 77(5):
1674-1680
51. Yang X, Tsai GJ, Tsao GT (1994) Enhancement of in situ adsorption on the acetone-butanol
fermentation by Clostridium acetobutylicum. Sep Tectmol 4(2):81-92
52. Yang X, Tsao GT (1995) Enhanced acetone-butanol fermentation using repeated fed-batch
operation coupled with cell recycle by membrane and simultaneous removal of inhibitory
products by adsorption. Biotechnol Bioeng 47:444-450
53. Zhang Y, Chen J, Yang Y et al (1996) Breeding high-ratio butanol strains of Clostridium
acetobutylicum and application to industrial production. Indust Microbiol 26:1-6
54. Zhang Y, Chen J, Yang Y et al (1996) Breeding of high-ratio butanol strains of Clostridicum
acetobutylicum and application to industrial production. Ind Microbiol 26(4):1-6
55. Zhang Y, Zhu Y, Li Y (2009) The importance of engineering physiological functionality into
microbes. Trends Biotechnol 27(12):664-672
56. Zhou H, Su Y, Yi S et al (2010) Effect of acetone and ethanol on pervaporation separation of
butanol. CIESC J 61(5):1143-1150
57. Zhu L, Dong H, Zhang Y et al (2011) Engineering the robustness of Clostridium
acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 13:426-434
58. Zverlov VV, Berezina O, Velikodvorskaya GA et al (2006) Bacterial acetone and butanol
production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural
waste for biorefinery. Appl Microbiol Biotechnol Bioeng 71:587-597
Search WWH ::




Custom Search