Biology Reference
In-Depth Information
91. Haller J, Hyde D, Deliolanis N, de Kleine R, Niedre M, Ntziachristos V. Visualization
of pulmonary inflammation using noninvasive fluorescence molecular imaging. J Appl
Physiol 2008; 104 :795-802.
92. von Burstin J, Eser S, Seidler B, Meining A, Bajbouj M, Mages J, et al. Highly sensitive
detection of early-stage pancreatic cancer by multimodal near-infrared molecular im-
aging in living mice. Int J Cancer 2008; 123 :2138-47.
93. Scherer RL, VanSaun MN, McIntyre JO, Matrisian LM. Optical imaging of matrix
metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Mol Imaging
2008; 7 :118-31.
94. Sheth RA, Upadhyay R, Stangenberg L, Sheth R, Weissleder R, Mahmood U.
Improved detection of ovarian cancer metastases by intraoperative quantitative fluores-
cence protease imaging in a pre-clinical model. Gynecol Oncol 2009; 112 :616-22.
95. Klohs J, Baeva N, Steinbrink J, Bourayou R, Boettcher C, Royl G, et al. In vivo near-
infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ische-
mia. J Cereb Blood Flow Metab 2009; 29 :1284-92.
96. Ignat M, Aprahamian M, Lindner V, Altmeyer A, Perretta S, Dallemagne B, et al. Fea-
sibility and reliability of pancreatic cancer staging using fiberoptic confocal fluorescence
microscopy in rats. Gastroenterology 2009;
: 1584-92 e1.
97. Nahrendorf M, Waterman P, Thurber G, Groves K, Rajopadhye M, Panizzi P, et al.
Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with custom-
ized nanosensors. Arterioscler Thromb Vasc Biol 2009; 29 :1444-51.
98. Habibollahi P, Figueiredo JL, Heidari P, Dulak AM, Imamura Y, Bass AJ, et al. Optical
Imaging with a Cathepsin B Activated Probe for the Enhanced Detection of Esophageal
Adenocarcinoma by Dual Channel Fluorescent Upper GI Endoscopy. Theranostics
2012; 2 :227-34.
99. Tung CH, Bredow S, Mahmood U, Weissleder R. Preparation of a cathepsin D sen-
sitive near-infrared fluorescence probe for imaging. Bioconjug Chem 1999; 10 :892-6.
100. Sloane BF, Yan S, Podgorski I, Linebaugh BE, Cher ML, Mai J, et al. Cathepsin B and
tumor proteolysis: contribution of the tumor microenvironment. Semin Cancer Biol
2005; 15 :149-57.
101. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association
between myeloperoxidase levels and risk of coronary artery disease.
137
JAMA
2001; 286 :2136-42.
102. Kedem O, Katchalsky A. Thermodynamic analysis of the permeability of biological
membranes to non-electrolytes. Biochim Biophys Acta 1958; 27 :229-46.
103. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vas-
cular permeability, accumulation, and penetration of macromolecular drug carriers.
J Natl Cancer Inst 2006; 98 :335-44.
104. Qin S, Seo JW, Zhang H, Qi J, Curry FR, Ferrara KW. An imaging-driven model for
liposomal stability and circulation. Mol Pharm 2010; 7 :12-21.
105. Kim J, YuW, Kovalski K, Ossowski L. Requirement for specific proteases in cancer cell
intravasation as
semiquantitative PCR-based assay. Cell
revealed by a novel
1998; 94 :353-62.
106. McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors
to tumor progression. Mol Med Today 2000;
:149-56.
107. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in can-
cer: rationale and progress. Nat Rev Cancer 2012; 12 :89-103.
108. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the
extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993; 9 :541-73.
109. Bogdanov Jr. AA, Lin CP, Simonova M, Matuszewski L, Weissleder R. Cellular ac-
tivation of the self-quenched fluorescent reporter probe in tumor microenvironment.
Neoplasia 2002; 4 :228-36.
6
Search WWH ::




Custom Search