Biology Reference
In-Depth Information
110. PhamW, Choi Y, Weissleder R, Tung CH. Developing a peptide-based near-infrared
molecular probe for protease sensing. Bioconjug Chem 2004; 15 :1403-7.
111. Law B, Curino A, Bugge TH, Weissleder R, Tung CH. Design, synthesis, and char-
acterization of urokinase plasminogen-activator-sensitive near-infrared reporter. Chem
Biol 2004; 11 :99-106.
112. Tung CH, Gerszten RE, Jaffer FA, Weissleder R. A novel near-infrared fluorescence
sensor for detection of thrombin activation in blood. Chembiochem 2002; 3 :207-11.
113. Penna FJ, Freilich DA, Alvarenga C, Nguyen HT. Improving lymph node yield in ret-
roperitoneal
lymph node dissection using fluorescent molecular imaging: a novel
method of
localizing lymph nodes in Guinea pig model. Urology 2011; 78 (232):
e15-e18.
114. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Tumor imaging by
means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA
2004; 101 :17867-72.
115. Olson ES, Aguilera TA, Jiang T, Ellies LG, Nguyen QT, Wong EH, et al. In vivo char-
acterization of activatable cell penetrating peptides for targeting protease activity in can-
cer. Integr Biol (Camb) 2009; 1 :382-93.
116. Kato D, Boatright KM, Berger AB, Nazif T, Blum G, Ryan C, et al. Activity-based
probes that target diverse cysteine protease families. Nat Chem Biol 2005;
:33-8.
117. Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, et al. Dynamic im-
aging of protease activity with fluorescently quenched activity-based probes. Nat Chem
Biol 2005; 1 :203-9.
118. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical
imaging of cysteine protease activity using fluorescently quenched activity-based pro-
bes. Nat Chem Biol 2007; 3 :668-77.
119. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluores-
cent probe design in medical diagnostic imaging. Chem Rev 2010; 110 :2620-40.
120. Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circu-
lation 2007; 116 :1052-61.
121. Malle E, Waeg G, Schreiber R, Grone EF, Sattler W, Grone HJ. Immunohistochem-
ical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic
lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur J
Biochem 2000; 267 :4495-503.
122. Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, et al.
Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes.
Circulation 2003; 108 :1440-5.
123. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, et al.
Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med
2003; 349 :1595-604.
124. Exner M, Minar E, Mlekusch W, Sabeti S, Amighi J, Lalouschek W, et al.
Myeloperoxidase predicts progression of carotid stenosis in states of low high-density
lipoprotein cholesterol. J Am Coll Cardiol 2006; 47 :2212-8.
125. Rosell A, Ortega-Aznar A, Alvarez-Sabin J, Fernandez-Cadenas I, Ribo M,
Molina CA, et al. Increased brain expression of matrix metalloproteinase-9 after ische-
mic and hemorrhagic human stroke. Stroke 2006;
1
:1399-406.
126. Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribo M, et al. Matrix
metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications
after thrombolysis in human stroke. Circulation 2003; 107 :598-603.
127. Rosell A, Alvarez-Sabin J, Arenillas JF, Rovira A, Delgado P, Fernandez-Cadenas I,
et al. A matrix metalloproteinase protein array reveals a strong relation between
MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke.
Stroke 2005; 36 :1415-20.
37
Search WWH ::




Custom Search