Biology Reference
In-Depth Information
Graham, T. G., Tabei, S. M., Dinner, A. R., and Rebay, I. (2010). Modeling bistable cell-
fate choices in the Drosophila eye: Qualitative and quantitative perspectives. Development
137, 2265-2278.
Gunsalus, K. C., Ge, H., Schetter, A. J., et al . (2005). Predictive models of molecular
machines involved in Caenorhabditis elegans early embryogenesis. Nature
861-865.
Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999). From molecular to
modular cell biology. Nature 402, C47-C52.
Herranz, H., and Cohen, S. M. (2010). MicroRNAs and gene regulatory networks:
Managing the impact of noise in biological systems. Genes Dev. 24, 1339-1344.
Hornstein, E., and Shomron, N. (2006). Canalization of development by microRNAs. Nat.
Genet. 38 (Suppl.), S20-S24.
Hsu, C. W., Juan, H. F., and Huang, H. C. (2008). Characterization of microRNA-
regulated protein-protein interaction network. Proteomics 8, 1975-1979.
Inui, M., Martello, G., and Piccolo, S. (2010). MicroRNA control of signal transduction.
Nat. Rev. Mol. Cell Biol. 11, 252-263.
Jeong, H., Mason, S. P., BarabĀ“si, A.-L., and Oltvai, Z. N. (2001). Lethality and centrality in
protein networks. Nature 411, 41-42.
Johnston, R. J., Jr., Chang, S., Etchberger, J. F., Ortiz, C. O., and Hobert, O. (2005).
MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate
decision. Proc. Natl. Acad. Sci. USA 102, 12449-12454.
Kaplan, S., Bren, A., Dekel, E., and Alon, U. (2008). The incoherent feed-forward loop can
generate non-monotonic input functions for genes. Mol. Syst. Biol. 4, 203.
Lai, E. C., Tam, B., and Rubin, G. M. (2005). Pervasive regulation of Drosophila Notch
target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19,
1067-1080.
Lee, Y., Yang, X., Huang, Y., et al . (2010). Network modeling identifies molecular
functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS
Comput. Biol. 6, e1000730.
Li, X., and Carthew, R. W. (2005). A microRNA mediates EGF receptor signaling and
promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267-1277.
Li, Y., Wang, F., Lee, J. A., and Gao, F. B. (2006). MicroRNA-9a ensures the precise
specification of sensory organ precursors in Drosophila . Genes Dev.
436,
2793-2805.
Li, X., Cassidy, J. J., Reinke, C. A., Fischboeck, S., and Carthew, R. W. (2009). A
microRNA imparts robustness against environmental fluctuation during development.
Cell 137, 273-282.
Liang, H., and Li, W. H. (2007). MicroRNA regulation of human protein-protein interac-
tion network. RNA 13, 1402-1408.
Lu, J., Shen, Y., Wu, Q., Kumar, S., He, B., Carthew, R. W., Wang, S., and Wu, C. I.
(2008). The birth and death of microRNA genes in Drosophila . Nat. Genet. 40, 351-355.
Mangan, S., and Alon, U. (2003). Structure and function of the feed-forward loop network
motif. Proc. Natl. Acad. Sci. USA 100, 11980-11985.
Mangan, S., Zaslaver, A., and Alon, U. (2003). The coherent feed forward loop serves as a
sign-sensitive delay element in transcription networks. J. Mol. Biol. 334, 197-204.
Martinez, N. J., and Walhout, A. J. (2009). The interplay between transcription factors and
microRNAs in genome-scale regulatory networks. Bioessays 31, 435-445. Review.
Martinez, N. J., Ow, M. C., Barrasa, M. I., Hammell, M., Sequerra, R., Doucette-
Stamm, L., Roth, F. P., Ambros, V., and Walhout, A. J. M. (2008). A C. elegans
genome-scale microRNA network contains composite feedback loops with high flux
capacity. Genes Dev. 22, 2535-2549.
Mavrakis, K. J., Van Der Meulen, J., Wolfe, A. L., et al . (2011). A cooperative microRNA-
tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat.
Genet. 43, 673-678.
20,
Search WWH ::




Custom Search