Biology Reference
In-Depth Information
REFERENCES
Albert, R., Jeong, H., and Barabasi, A. L. (2000). Error and attack tolerance of complex
networks. Nature 406, 378-382.
Alon, U. (2007). Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 8,
450-461.
Alvarez-Saavedra, E., and Horvitz, H. R. (2010). Many families of C. elegans microRNAs
are not essential for development or viability. Curr. Biol. 20, 367-373.
Bandyopadhyay, S., Mitra, R., Maulik, U., and Zhang, M. Q. (2010). Development of the
human microRNA cancer network. Silence 1, 6.
Barab´si, A. L., and Oltvai, Z. N. (2004). Network biology: Understanding the cell's
functional organization. Nat. Rev. Genet.
101-113.
Barkai, N., and Leibler, S. (1997). Robustness in simple biochemical networks. Nature
5,
387,
913-917.
Bartel, D. P., and Chen, C. Z. (2004). Micromanagers of gene expression: The potentially
widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396-400.
Basu, M., Bhattacharyya, N. P., and Mohanty, P. K. (2011). Modules of human micro-
RNA co-target network. J. Phys. Conf. Ser. 297, 012002.
Bonnet, E., Tatari, M., Joshi, A., Michoel, T., Marchal, K., Berx, G., and Van de Peer, Y.
(2010). Module network inference from a cancer gene expression data set identifies
microRNA regulated modules. PLoS One 5, e10162.
Brandman, O., and Meyer, T. (2008). Feedback loops shape cellular signals in space and
time. Science 322, 390-395.
Brenner, J. L., Jasiewicz, K. L., Fahley, A. F., Kemp, B. J., and Abbott, A. L. (2010). Loss of
individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in
C. elegans . Curr. Biol. 20, 1321-1325.
Bushati, N., and Cohen, S. M. (2007). MicroRNA functions. Annu. Rev. Cell Dev. Biol. 23,
175-205.
Carthew, R. W. (2006). Gene regulation by microRNAs. Curr. Opin. Genet. Dev. 16,
203-208.
Chang, D. E., Leung, S., Atkinson, M. R., Reifler, A., Forger, D., and Ninfa, A. J. (2010).
Building biological memory by linking positive feedback loops. Proc. Natl. Acad. Sci.
USA 107, 175-180.
Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M.,
Conlon, F. L., and Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133
in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228-233.
Cohen, S. M., Brennecke, J., and Stark, A. (2006). Denoising feedback loops by threshold-
ing—A new role for microRNAs. Genes Dev.
20, 2769-2772.
Cui, Q., Yu, Z., Pan, Y., Purisima, E. O., and Wang, E. (2007). MicroRNAs preferentially
target the genes with high transcriptional regulation complexity. Biochem. Biophys. Res.
Commun. 352, 733-738.
Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B. Z., and Barkai, N. (2002). Robustness of
the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304-308.
Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M. L., Nervi, C., and Bozzoni, I.
(2005). A minicircuitry comprised of microRNA-223 and transcription factors NFI-A
and C/EBPalpha regulates human granulopoiesis. Cell 123, 819-831.
Ferrell, J. E., Jr. (2002). Self-perpetuating states in signal transduction: Positive feedback,
double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140-148.
Ghosh, B., Karmakar, R., and Bose, I. (2005). Noise characteristics of feed forward loops.
Phys. Biol. 2, 36-45.
Goentoro, L., Shoval, O., Kirschner, M. W., and Alon, U. (2009). The incoherent feedfor-
ward loop can provide fold-change detection in gene regulation. Mol. Cell 11, 894-899.
Search WWH ::




Custom Search