Biology Reference
In-Depth Information
Mehta, P., Goyal, S., and Wingreen, N. S. (2008). A quantitative comparison of sRNA-
based and protein-based gene regulation. Mol. Syst. Biol. 4, 221, Published online 2008
October 14.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002).
Network motifs: Simple building blocks of complex networks. Science
824-827.
Miska, E. A., Alvarez-Saavedra, E., Abbott, A. L., Lau, N. C., Hellman, A. B.,
McGonagle, S. M., Bartel, D. P., Ambros, V. R., and Horvitz, H. R. (2007). Most
Caenorhabditis elegans microRNAs are individually not essential for development or
viability. PLoS Genet. 3, e215.
Mookherjee, S., Sinha, M., Mukhopadhyay, S., Bhattacharyya, N. P., and Mohanty, P. K.
(2009a). MicroRNA interaction network in human: Implications of clustered micro-
RNAs in biological pathways and genetic disease. Online J. Bioinform. 10, 280.
Mookherjee, S., Sinha, M., Mukhopadhyay, S., Bhattacharyya, N. P., and Mohanty, P. K.
(2009b). Analysis of clustered microRNAs in biological pathways. Online J. Bioinform. 10,
296.
O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., and Mendell, J. T. (2005).
c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839-843.
Osella, M., Bosia, C., CorĀ“, D., and Caselle, M. (2011). The role of incoherent microRNA-
mediated feedforward loops in noise buffering. PLoS Comput. Biol. 7, e1001101.
Re, A., CorĀ“, D., Taverna, D., and Caselle, M. (2009). Genome-wide survey of microRNA-
transcription factor feed-forward regulatory circuits in human. Mol. Biosyst. 5, 854-867.
Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E.,
Horvitz, H. R., and Ruvkun, G. (2000). The 21-nt let-7 RNA regulates developmental
timing in C. elegans . Nature 403, 901-906.
Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., and Bartel, D. P.
(2002). Prediction of plant microRNA targets. Cell 110, 513-520.
Shalgi, R., Lieber, D., Oren, M., and Pilpel, Y. (2007). Global and local architecture of the
mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol. 3,
e131.
Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the
transcriptional regulation network of Escherichia coli . Nat. Genet.
298,
64-68.
Tibiche, C., and Wang, E. (2008). MicroRNA regulatory patterns on the human metabolic
network. Open Syst. Biol. J. 1, 1-8.
Tsang, J., Zhu, J., and van Oudenaarden, A. (2007). MicroRNA-mediated feedback and
feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753-767.
von Dassow, G., Meir, E., Munro, E. M., and Odell, G. M. (2000). The segment polarity
network is a robust developmental module. Nature 406, 188-192.
Wu, C. I., Shen, Y., and Tang, T. (2009). Evolution under canalization and the dual roles of
microRNAs: A hypothesis. Genome Res. 19, 734-743.
Yoo, A. S., and Greenwald, I. (2005). LIN-12/notch activation leads to MicroRNA-
mediated down-regulation of Vav in C. elegans . Science 310, 1330-1333.
Yu, H., Kim, P. M., Sprecher, E., Trifonov, V., and Gerstein, M. (2007). The importance of
bottlenecks in protein networks: Correlation with gene essentiality and expression
dynamics. PLoS Comput. Biol. 3, e59.
Yuan, X., Liu, C., Yang, P., He, S., Liao, Q., Kang, S., and Zhao, Y. (2009). Clustered
microRNAs' coordination in regulating protein-protein interaction network. BMC Syst.
Biol. 3, 65.
Zotenko, E., Mestre, J., O'Leary, D. P., and Przytycka, T. M. (2008). Why do hubs in the
yeast protein interaction network tend to be essential: Reexamining the connection
between the network topology and essentiality. PLoS Comput. Biol. 4, e1000140.
31,
Search WWH ::




Custom Search