Information Technology Reference
In-Depth Information
43. W. Gerstner and W. Kistler. Spiking Neuron Models. Cambridge, MA: Cambridge
University Press, 2002.
44. W. Mass and C. Bishop. Pulsed Neural Networks. Cambridge, MA: The MIT Press,
1999.
45. A. Perez-Uribe. Structure-adaptable digital neural networks. Ph.D. Thesis, EPFL,
1999.
46. E. Ros, R. Agis, R. Carrillo, and E. Ortigosa. Post-synaptic time-dependent con-
ductance in spiking neurons: FPGA implementation of a flexible cell model. Proceed-
ings of IWANN'03: LNCS 2687, pp 145-152, 2003.
47. A. Upegui, C. A. Pena-Reyes, and E. Sanchez. A methodology for evolving spiking
neural network topologies on line using partial dynamic reconfiguration. Submitted to
International Congress on Computational Intelligence (CIIC03), Medellı´ n, Colombia.
48. X. Yao. Evolving artificial neural networks. In: Proceedings of the IEEE, 87(9): pp
1423-1447, Sep 1999.
49. L. Reyneri. On the Performance of Pulsed and Spiking Neurons: Analog Integrated
Circuits and Signal Processing. Amsterdam: Kluwer 2002 pp 30, 101-119.
50. A. Murray, D. Corso, and L. Tarassenko. Pulse-stream VLSI neural networks mixing
analog and digital techniques. IEEE Transactions on Neural Networks: Mar 1991.
51. M. S. Gudiksen, J. Wang, and C. M. Lieber. Synthetic control of the diameter and
length of single crystal semiconductor nanowires. Journal of Physical Chemistry B, 105:
p. 4062, 2001.
52. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber. Directed assembly of one dimensional
nanostructures into functional networks. Science, 291: p. 630, 2001.
53. N. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. Petroff, and
J. R. Heath. Ultrahigh density nanowire lattices and circuits. Science, 300: p. 112, 2003.
54. M. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang. Catalytic growth
of zinc oxide nanowires through vapor transport. Advanced Materials, 13(2): p. 113,
2001.
55. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou. Electronic transport
studies of single-crystalline In 2 O 3 nanowires. Applied Physics Letters, 82: pp 112-114,
2003.
56. C. Zhou, J. Kong, E. Yenilmez, and H. Dai. Modulated chemical doping of individual
carbon nanotubes. Science, 290: pp 1552-1555, 2000.
57. J. Kong, N. Franklin, C. Zhou, S. Peng, K. Cho, and H Dai. Nanotube molecular wires
as chemical sensors. Science, 287: 622-625, 2000.
58. X. Liu, R. Lee, J. Han, and C. Zhou. Carbon nanotube field-effect inverters. Applied
Physics Letters, 79: pp 3329-3331, 2001.
59. X. Liu, Z. Luo, S. Han, T. Tang, D. Zhang, and C. Zhou. Band engineering of carbon
nanotube field-effect transistors via selected area chemical gating. Applied Physics
Letters, 86: 243501 1-3, 2005.
60. X. Liu, S. Han, and C. Zhou. Template-free directional growth of single-walled carbon
nanotubes on a- and r-plane sapphire. Journal of American Chemistry Society, 127:
pp 5294-5295, 2005.
61. X. Liu, S. Han, and C. Zhou. A novel nanotube-on-insulator (NOI) approach toward
nanotube devices. Nano Letters: 2005. Published online.
 
Search WWH ::




Custom Search