Information Technology Reference
In-Depth Information
62. X. Liu, S. Han, and C. Zhou. A novel nanotube-on-insulator (NOI) approach toward
nanotube devices. Nano Letters, 6(3): pp 4-39, 2006.
63. K. Natori, Y. Kimura, and T. Shimizu. Characteristics of a carbon nanotube field-
effect transistor analyzed as a ballistic nanowire field-effect transistor. Journal of
Applied Physics, 97: pp 034306, 2005.
64. J. Guo, M. Lundstrom, and S. Datta. Performance projections for ballistic carbon
nanotube field-effect transistors. Applied Physics Letters, 80: pp 3192-3194, 2002.
65. P. J. Burke. Carbon Nanotube Devices for GHz to THz Applications. Proceedings of
the 2003 International Semiconductor Device Research Symposium, invited paper.
66. A. Naeemi, R. Sarvari, and J. D. Meindl. Performance comparison between carbon
nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron
Device Letters, 26: pp 84-86, 2005.
67. A. Raychowdhury, S. Mukhopadhyay, and K. Roy. A circuit-compatible model of
ballistic carbon nanotube field-effect transistors. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23: pp 1411-1420, 2004.
68. M. Cheung and C. Dwyer, Sorin. Semi-empirical SPICE Models for Carbon Nanotube
FET Logic. Proceedings of the 4th IEEE Conference on Nanotechnology: 2004.
69. V. Braitenberg and A Schuz. Cortex: Statistics and Geometry of Neuronal Connectivity.
New York: Springer, 1998.
70. V. Braitenberg. On the Texture of Brains. New York: Springer, 1977.
71. C. Stevens. Seminar at University of Southern California: Jan 29, 2007. http://
www.salk.edu/faculty/faculty/details.php?id=50.
72. K. Zhang and T. Sejnowski. A universal scaling law between gray matter and white
matter of cerebral cortex. Proceedings of the National Academy of Sciences, 97(10):
pp 5621-5626, May 9 2000.
73. S. Laughlin and T. Sejnowski. Communication in neuronal networks. Science, 301:
pp 1870-1874, Sep 26 2003.
74. M. Singh, D. Hwang, W. Sungkarat, and K. Veera. Evaluation of MRI DTI-
tractography by tract-length histogram. Progress in Biomedical Optics and Imaging:
Physiology, Function and Structure from Medical Images, 5746(1): pp 138-147, 2005.
75. J. Bailey and D. Hammerstrom. Why VLSI implementations of associative VLCNs
require connection multiplexing. IEEE International Conference on Neural Networks,
Jul 1988, Volume 2: pp 173-180.
76. Y. M. Chang, D. L. Rosene, R. J. Killiany, L. A. Mangiamele, and J. I. Luebke.
Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal
cortex are significantly related to cognitive performance in aged monkeys. Cerebral
Cortex Magazine, 15(4): 409-418, 2005.
77. G. Gonzalez-Burgos, L. S. Krimer, N. N. Urban, G. Barrionuevo, and D. A. Lewis.
Synaptic Efficacy during repetitive activation of excitatory inputs in primate dorso-
lateral prefrontal cortex. Cerebral Cortex Magazine, 14(5): 2004.
78. International Technology Roadmap for Semiconductors, 2005. http://www.itrs.net/
Common/2005ITRS/Interconnect2005.pdf.
79. C. Lu, B. X. Shi, and L Chen. An on-chip learning neural network with ideal neuron
characteristics and learning rate adaptation. Analog Integrated Circuits and Signal
Processing, Amsterdam: Kluwer, 31: pp 55-62, 2002.
 
Search WWH ::




Custom Search