Information Technology Reference
In-Depth Information
45. G. H. Bernstein, et al. Observation of switching in a quantum-dot cellular automata
cell. Nanotechnology, 10(2): p 166, 1999.
46. I. Amlani, et al. Demonstration of a six-dot quantum cellular automata system.
Applied Physics Letters, 72(17): p 2179, 1998.
47. I. Amlani, et al. Digital logic gate using quantum-dot cellular automata. Science,
284(5412): pp 289-291, 1999.
48. R. Beckman, et al. Bridging dimensions: demultiplexing ultrahigh-density nanowire
circuits. Science, 310(5747): pp 465-468, 2005.
49. N. A. Melosh, et al. Ultrahigh-density nanowire lattices and circuits. Science,
300(5616): pp 112-115, 2003.
50. J. M. Birkner and H. T. Chua, inventors. Monolithic Memories, Inc., assignees.
Programmable array logic circuit. U.S. Patent. 1978.
51. Y. Cui, et al. High performance silicon nanowire field effect transistors. Nano Letters,
3(2): pp 149-152, 2003.
52. A. DeHon. Array-based architecture for FET-based, nanoscale electronics. IEEE
Transactions on Nanotechnology, 2(1): pp 23-32, 2003.
53. G. Snider, P. Kuekes, and R. S. Williams. CMOS-like logic in defective, nanoscale
crossbars. Nanotechnology, 15(8): pp 881-891, 2004.
54. Y. Cui and C. M. Lieber. Functional nanoscale electronic devices assembled using
silicon nanowire building blocks. Science, 291(5505): pp 851-853, 2001.
55. K. D. Ausman, et al. Roping and wrapping carbon nanotubes. In: Electronic Proper-
ties of Molecular Nanostructures: XV International Winterschool/Euroconference,
Kirchberg, Tirol (Austria), 2001: AIP.
56. J. L. Bahr, et al. Dissolution of small diameter single-wall carbon nanotubes in
organic solvents? Chemical Communications, 193: p 194, 2001.
57. E. T. Mickelson, et al. Solvation of fluorinated single-wall carbon nanotubes in
alcohol solvents. Journal of Physical Chemistry B, 103(21): pp 4318-4322, 1999.
58. J. Chen, et al. Dissolution of full-length single-walled carbon nanotubes. Journal of
Physical Chemistry B, 105(13): pp 2525-2528, 2001.
59. J. L. Bahr, et al. Functionalization of carbon nanotubes by electrochemical reduction
of aryl diazonium salts: a bucky paper electrode. Journal of American Chemistry
Society, 123(27): pp 6536-6542, 2001.
60. J. L. Bahr and J. M. Tour. Highly functionalized carbon nanotubes using in situ
generated diazonium compounds. Carbon, 313: pp 91-97, 2001.
61. J. L. Bahr and J. M. Tour. Covalent chemistry of single-wall carbon nanotubes.
Journal of Materials Chemistry, 12: pp. 1952-1958.
62. Y. Wang, et al. Reversible water-solubilization of single-walled carbon nanotubes by
polymer wrapping. Chemical Physics Letters, 342: pp 265-271, 2001.
63. Y. Cui, et al. Diameter-controlled synthesis of single-crystal silicon nanowires. Applied
Physics Letters, 78(15): p 2214, 2001.
64. Y. Huang, et al. Logic gates and computation from assembled nanowire building
blocks. Science, 294(5545): pp 1313-1317, 2001.
65. D. Whang, S. Jin and C. M. Lieber. Nanolithography using hierarchically assembled
nanowire masks. Nano Letters, 3(7): pp 951-954, 2003.
 
Search WWH ::




Custom Search