Information Technology Reference
In-Depth Information
25. J. Chen, et al. Room-temperature negative differential resistance in nanoscale
molecular junctions. Applied Physics Letters, 77(8): p 1224, 2000.
26. J. M. Seminario, A. G. Zacarias, and P. A. Derosa. Theoretical analysis of
complementary molecular memory devices. Journal of Physical Chemistry A, 105(5):
pp 791-795, 2001.
27. J. M. Seminario, A. G. Zacarias, and J. M. Tour. Theoretical study of a mole-
cular resonant tunneling diode. Journal of American Chemistry Society, 122(13):
pp 3015-3020, 2000.
28. C. P Collier, et al. A [2]Catenane-based solid state electronically reconfigurable switch.
Science, 289(5482): pp 1172-1175, 2000.
29. A. R. Pease, et al. Switching devices based on interlocked molecules. Accounts of
Chemical Research, 34(6): pp 433-444, 2001.
30. V. Balzani, M. Gomez-Lopez, and J. F. Stoddart. Molecular machines. Accounts of
Chemical Research, 31(7): pp 405-414, 1998.
31. C. P. Collier, et al. Electronically configurable molecular-based logic gates. Science,
285(5426): pp 391-394, 1999.
32. J. E. Green, et al. A 160-kilobit molecular electronic memory patterned at 10 11 bits per
square centimeter. Nature, 445(7126): p 414, 2007.
33. J. M. Tour, et al. Synthesis and preliminary testing of molecular wires and devices.
Chemistry, A European Journal, (7): pp 5118-5134, 2001.
34. M. A. Reed and J. M. Tour. Computing with molecules. Scientific American, (June):
pp 86-93, 2000.
35. J. M. Seminario, A. G. Zacarias, and J. M. Tour. Molecular alligator clips for single
molecule electronics. Studies of group 16 and isonitriles interfaced with Au contacts.
Journal of American Chemistry Society, 121(2): pp 411-416, 1999.
36. J. Chen, et al. Molecular wires, switches, and memories. Annals of the New York
Academy of Sciences, 960(1): pp 69-99, 2002.
37. J. Chen, et al. Electronic transport through metal-1, 4-phenylene diisocyanide-metal
junctions. Chemical Physics Letters, 313: pp 741-748, 1999.
38. J. M. Tour, M. Kozaki, and J. M. Seminario. Molecular scale electronics: a synthetic/
computational approach to digital computing. Journal of American Chemistry Society,
120(33): pp 8486-8493, 1998.
39. P. D. Tougaw and C. S. Lent. Logical devices implemented using quantum cellular
automata. Journal of Applied Physics, 75(3): p 1818, 1994.
40. C. S. Lent and P. D. Tougaw. A device architecture for computing with quantum dots.
Proceedings of the IEEE, 85(4): p 541, 1997.
41. T. Rueckes, et al. Carbon nanotube-based nonvolatile random access memory for
molecular computing. Science, 289(5476): pp 94-97, 2000.
42. Y. Huang, et al. Directed assembly of one-dimensional nanostructures into functional
networks. Science, 291(5504): pp 630-633, 2001.
43. S. W. Chung, J. Y. Yu, and J. R. Heath. Silicon nanowire devices. Applied Physics
Letters, 76(15): p 2068, 2000.
44. G. L. Snider, et al. Quantum-dot cellular automata: Review and recent experiments
(Invited). AIP: 1999.
 
Search WWH ::




Custom Search